論文の概要: Collective control of modular soft robots via embodied Spiking Neural
Cellular Automata
- arxiv url: http://arxiv.org/abs/2204.02099v1
- Date: Tue, 5 Apr 2022 10:42:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-06 14:01:17.850820
- Title: Collective control of modular soft robots via embodied Spiking Neural
Cellular Automata
- Title(参考訳): embodied spiking neural cellular automataによるモジュール型ソフトロボットの集団制御
- Authors: Giorgia Nadizar, Eric Medvet, Stefano Nichele, Sidney Pontes-Filho
- Abstract要約: ボクセルベースソフトロボット(Voxel-based Soft Robots、VSR)は、いくつかの変形可能な立方体、すなわちボクセルからなるモジュラーソフトロボットの一種である。
本稿では,神経セルオートマタ(NCA)の影響を受け,生体内スパイクニューラルネットワークであるスパイキングNCAをベースとした,新しい形態の集団制御を提案する。
- 参考スコア(独自算出の注目度): 1.0323063834827415
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Voxel-based Soft Robots (VSRs) are a form of modular soft robots, composed of
several deformable cubes, i.e., voxels. Each VSR is thus an ensemble of simple
agents, namely the voxels, which must cooperate to give rise to the overall VSR
behavior. Within this paradigm, collective intelligence plays a key role in
enabling the emerge of coordination, as each voxel is independently controlled,
exploiting only the local sensory information together with some knowledge
passed from its direct neighbors (distributed or collective control). In this
work, we propose a novel form of collective control, influenced by Neural
Cellular Automata (NCA) and based on the bio-inspired Spiking Neural Networks:
the embodied Spiking NCA (SNCA). We experiment with different variants of SNCA,
and find them to be competitive with the state-of-the-art distributed
controllers for the task of locomotion. In addition, our findings show
significant improvement with respect to the baseline in terms of adaptability
to unforeseen environmental changes, which could be a determining factor for
physical practicability of VSRs.
- Abstract(参考訳): ボクセルベースソフトロボット(Voxel-based Soft Robots、VSR)は、いくつかの変形可能な立方体、すなわちボクセルからなるモジュラーソフトロボットの一種である。
したがって、各VSRは単純なエージェント、すなわちボクセルの集まりであり、VSR全体の挙動を引き起こすために協力する必要がある。
このパラダイムでは、集団知性はコーディネーションの出現を可能にする上で重要な役割を担っており、それぞれのボクセルは独立して制御され、局所的な感覚情報のみを、その直接隣人(分布的または集団的制御)から受け継がれた知識とともに活用する。
本研究では,ニューラルセルラーオートマタ(NCA)の影響を受け,バイオインスパイアされたスパイキングニューラルネットワーク(SNCA)をベースとした,新しい集団制御方式を提案する。
我々はSNCAの様々な変種を実験し、それらが現在最先端の分散制御器と競合し、移動作業を行う。
また,vsrの物理的実用性を決定する要因となりうる,予期せぬ環境変化への適応性について,基準値に対して有意な改善が見られた。
関連論文リスト
- Spiking Neural Networks as a Controller for Emergent Swarm Agents [8.816729033097868]
既存の研究では、バイナリセンサーとシンプルだが手書きのコントローラー構造のみを備えたロボット群における創発的行動について検討している。
本稿では,特に創発的行動をもたらす局所的相互作用規則を見つけるために,スパイクニューラルネットワークを訓練する可能性について検討する。
論文 参考訳(メタデータ) (2024-10-21T16:41:35Z) - Exploring Latent Pathways: Enhancing the Interpretability of Autonomous Driving with a Variational Autoencoder [79.70947339175572]
バイオインスパイアされたニューラルサーキットポリシーモデルが革新的な制御モジュールとして登場した。
我々は、変分オートエンコーダとニューラルネットワークポリシーコントローラを統合することで、飛躍的に前進する。
本研究は,変分オートエンコーダへのアーキテクチャシフトに加えて,自動潜時摂動ツールを導入する。
論文 参考訳(メタデータ) (2024-04-02T09:05:47Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
繰り返し接続のパラメータ化が閉ループ設定のロバスト性にどのように影響するかを示す。
パラメータが少ないクローズドフォーム連続時間ニューラルネットワーク(CfCs)は、フルランクで完全に接続されたニューラルネットワークよりも優れています。
論文 参考訳(メタデータ) (2023-10-05T21:44:18Z) - Decentralized Motor Skill Learning for Complex Robotic Systems [5.669790037378093]
本稿では,分散モータスキル(DEMOS)学習アルゴリズムを提案する。
本手法は, 性能を犠牲にすることなく, 政策の堅牢性と一般化を向上する。
四足歩行ロボットとヒューマノイドロボットの実験は、学習方針が局所的な運動障害に対して堅牢であり、新しいタスクに移行できることを示した。
論文 参考訳(メタデータ) (2023-06-30T05:55:34Z) - Low-Rank Modular Reinforcement Learning via Muscle Synergy [25.120547719120765]
モジュール強化学習(RL)は、アクチュエータごとに学習ポリシーを学習することで、多関節ロボットの制御を分散化する。
ロボット制御におけるDoFの冗長性を利用したSOLAR(Synergy-Oriented LeARning)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-26T16:01:31Z) - DMAP: a Distributed Morphological Attention Policy for Learning to
Locomote with a Changing Body [126.52031472297413]
本稿では,生物学的に着想を得たポリシーネットワークアーキテクチャであるDMAPを紹介する。
主観的状態に基づく制御ポリシは,高度に可変な身体構成では不十分であることを示す。
DMAPは、すべての考慮された環境において、全体的な一致またはオラクルエージェントのパフォーマンスを超越して、エンドツーエンドで訓練することができる。
論文 参考訳(メタデータ) (2022-09-28T16:45:35Z) - The Sensory Neuron as a Transformer: Permutation-Invariant Neural
Networks for Reinforcement Learning [11.247894240593691]
私たちは、各感覚入力を環境から異なるが同一のニューラルネットワークに供給するシステムを構築します。
これらのセンサネットワークは、ローカルに受信した情報を統合するための訓練が可能であり、アテンションメカニズムによるコミュニケーションにより、グローバルな一貫性を持つポリシーをまとめて作成できることが示される。
論文 参考訳(メタデータ) (2021-09-07T05:12:50Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
スパイクセントラルパターンジェネレーターは、外部刺激によって駆動される異なる移動パターンを生成します。
終端ロボットプラットフォーム(あらゆる脚ロボット)の移動は、任意のセンサーを入力として地形に適応することができる。
論文 参考訳(メタデータ) (2021-01-24T12:44:38Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z) - Closed-loop spiking control on a neuromorphic processor implemented on
the iCub [4.1388807795505365]
混合信号アナログデジタルニューロモルフィックハードウェアに実装した閉ループモータコントローラを提案する。
ネットワークは、ターゲット、フィードバック、エラー信号を符号化することで比例制御を行う。
ネットワーク構造を最適化して、ノイズの多い入力やデバイスミスマッチをより堅牢にします。
論文 参考訳(メタデータ) (2020-09-01T14:17:48Z) - Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped [64.64924554743982]
本稿では,ニューラルネットワークを用いた中央パターン生成機構を実装し,閉ループロボット制御を実現するためのフレームワークを提案する。
本研究では,従順な四足歩行ロボットのシミュレーションモデル上で,予め定義された歩行パターン,速度制御,歩行遷移の学習を実演する。
論文 参考訳(メタデータ) (2020-04-09T14:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。