論文の概要: A Design Methodology for Fault-Tolerant Computing using Astrocyte Neural
Networks
- arxiv url: http://arxiv.org/abs/2204.02942v1
- Date: Wed, 6 Apr 2022 17:15:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-18 02:42:42.945700
- Title: A Design Methodology for Fault-Tolerant Computing using Astrocyte Neural
Networks
- Title(参考訳): アストロサイトニューラルネットを用いたフォールトトレラントコンピューティングの一設計法
- Authors: Murat I\c{s}{\i}k, Ankita Paul, M. Lakshmi Varshika, Anup Das
- Abstract要約: 本稿では,ディープラーニングモデルの耐障害性向上のための設計手法を提案する。
まず,神経回路とシナプス回路をアストロサイト回路で囲む多コア耐故障性ニューロモルフィックハードウェアの設計を行う。
次に,ハードウェア故障に対する許容範囲を達成するために,深層学習モデルにアストロサイトを導入する。
- 参考スコア(独自算出の注目度): 0.22940141855172028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a design methodology to facilitate fault tolerance of deep
learning models. First, we implement a many-core fault-tolerant neuromorphic
hardware design, where neuron and synapse circuitries in each neuromorphic core
are enclosed with astrocyte circuitries, the star-shaped glial cells of the
brain that facilitate self-repair by restoring the spike firing frequency of a
failed neuron using a closed-loop retrograde feedback signal. Next, we
introduce astrocytes in a deep learning model to achieve the required degree of
tolerance to hardware faults. Finally, we use a system software to partition
the astrocyte-enabled model into clusters and implement them on the proposed
fault-tolerant neuromorphic design. We evaluate this design methodology using
seven deep learning inference models and show that it is both area and power
efficient.
- Abstract(参考訳): 本稿では,ディープラーニングモデルのフォールトトレランスを促進する設計手法を提案する。
まず,多コアのフォールトトレラントなニューロモルフィックハードウェアの設計を実装し,各ニューロモルフィックコアのニューロンとシナプス回路をアストロサイト回路で囲み込み,クローズドループ逆行性フィードバック信号を用いて失敗ニューロンのスパイク発火頻度を回復することにより自己回復を促進する脳の星状グリア細胞とする。
次に,ハードウェア故障に対する許容範囲を達成するために,深層学習モデルにアストロサイトを導入する。
最後に,システムソフトウェアを用いてastrocyte対応モデルをクラスタに分割し,提案するフォールトトレラントニューロモルフィック設計に実装する。
この設計手法を7つのディープラーニング推論モデルを用いて評価し,面積と電力効率の両方を示す。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Neuromorphic Auditory Perception by Neural Spiketrum [27.871072042280712]
本研究では、時間変化のアナログ信号を効率的なスパイクパターンに変換するために、スパイク時相と呼ばれるニューラルスパイク符号化モデルを導入する。
このモデルは、様々な聴覚知覚タスクにおいて、スパイクニューラルネットワークのトレーニングを容易にする、正確に制御可能なスパイクレートを備えたスパースで効率的な符号化スキームを提供する。
論文 参考訳(メタデータ) (2023-09-11T13:06:19Z) - Injecting Logical Constraints into Neural Networks via Straight-Through
Estimators [5.6613898352023515]
ニューラルネットワーク学習に離散的な論理的制約を注入することは、ニューロシンボリックAIにおける大きな課題の1つだ。
ニューラルネットワークの学習に論理的制約を組み込むために、バイナリニューラルネットワークをトレーニングするために導入されたストレートスルー推定器が効果的に適用できることがわかった。
論文 参考訳(メタデータ) (2023-07-10T05:12:05Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Single-phase deep learning in cortico-cortical networks [1.7249361224827535]
バーストCCNは,バースト活動,短期可塑性,樹状突起を対象とする神経介在物を統合した新しいモデルである。
以上の結果から,脳内皮下,細胞下,マイクロサーキット,システムレベルでの皮質的特徴は,脳内単相効率の深層学習と一致していることが示唆された。
論文 参考訳(メタデータ) (2022-06-23T15:10:57Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - An error-propagation spiking neural network compatible with neuromorphic
processors [2.432141667343098]
本稿では,局所的な重み更新機構を用いたバックプロパゲーションを近似したスパイクに基づく学習手法を提案する。
本稿では,重み更新機構による誤り信号のバックプロパゲートを可能にするネットワークアーキテクチャを提案する。
この研究は、超低消費電力混合信号ニューロモルフィック処理系の設計に向けた第一歩である。
論文 参考訳(メタデータ) (2021-04-12T07:21:08Z) - Closed-Loop Neural Interfaces with Embedded Machine Learning [12.977151652608047]
ニューラルネットワークに機械学習を組み込むことの最近の進歩を概観する。
脳インプラントにおける神経信号の低消費電力・メモリ効率分類のための木モデルを提案する。
エネルギー認識学習とモデル圧縮を用いて、提案した斜め木は、発作や震動検出、モータ復号といった応用において、従来の機械学習モデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-15T14:34:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。