論文の概要: Closed-Loop Neural Interfaces with Embedded Machine Learning
- arxiv url: http://arxiv.org/abs/2010.09457v2
- Date: Wed, 21 Oct 2020 11:56:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 05:29:15.649461
- Title: Closed-Loop Neural Interfaces with Embedded Machine Learning
- Title(参考訳): 組み込み機械学習を用いたクローズドループニューラルインタフェース
- Authors: Bingzhao Zhu, Uisub Shin, Mahsa Shoaran
- Abstract要約: ニューラルネットワークに機械学習を組み込むことの最近の進歩を概観する。
脳インプラントにおける神経信号の低消費電力・メモリ効率分類のための木モデルを提案する。
エネルギー認識学習とモデル圧縮を用いて、提案した斜め木は、発作や震動検出、モータ復号といった応用において、従来の機械学習モデルより優れていることを示す。
- 参考スコア(独自算出の注目度): 12.977151652608047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural interfaces capable of multi-site electrical recording, on-site signal
classification, and closed-loop therapy are critical for the diagnosis and
treatment of neurological disorders. However, deploying machine learning
algorithms on low-power neural devices is challenging, given the tight
constraints on computational and memory resources for such devices. In this
paper, we review the recent developments in embedding machine learning in
neural interfaces, with a focus on design trade-offs and hardware efficiency.
We also present our optimized tree-based model for low-power and
memory-efficient classification of neural signal in brain implants. Using
energy-aware learning and model compression, we show that the proposed oblique
trees can outperform conventional machine learning models in applications such
as seizure or tremor detection and motor decoding.
- Abstract(参考訳): 神経疾患の診断と治療には,多地点電気記録,オンサイト信号分類,クローズドループ療法が可能な神経インターフェイスが重要である。
しかしながら、低消費電力のニューラルネットワークデバイスに機械学習アルゴリズムをデプロイすることは、そのようなデバイスに対する計算とメモリリソースの厳しい制約を考えると、難しい。
本稿では、ニューラルネットワークに機械学習を組み込むことの最近の進歩を概観し、設計トレードオフとハードウェア効率に焦点をあてる。
また,脳インプラントにおける神経信号の低消費電力・メモリ効率分類のための木モデルを提案する。
エネルギーアウェア学習とモデル圧縮を用いて,提案する斜め木は,入力や振れ検出,モータデコードといった従来の機械学習モデルよりも優れることを示す。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Neuromorphic Auditory Perception by Neural Spiketrum [27.871072042280712]
本研究では、時間変化のアナログ信号を効率的なスパイクパターンに変換するために、スパイク時相と呼ばれるニューラルスパイク符号化モデルを導入する。
このモデルは、様々な聴覚知覚タスクにおいて、スパイクニューラルネットワークのトレーニングを容易にする、正確に制御可能なスパイクレートを備えたスパースで効率的な符号化スキームを提供する。
論文 参考訳(メタデータ) (2023-09-11T13:06:19Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
脳信号に基づく手振り分類の例題問題に対して,簡単な機械学習に基づくアプローチを提案する。
本手法は脳波データとECoGデータの両方で異なる対象に一般化し,92.74-97.07%の範囲で精度が向上することを示した。
論文 参考訳(メタデータ) (2023-04-21T16:23:40Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - An embedding for EEG signals learned using a triplet loss [0.0]
脳-コンピュータインタフェース(BCI)では、デコードされた脳状態情報を最小の時間遅延で使用することができる。
このようなデコードタスクの課題は、小さなデータセットサイズによって引き起こされる。
神経生理学的データのための新しいドメイン特異的埋め込みを提案する。
論文 参考訳(メタデータ) (2023-03-23T09:05:20Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - Neuro-BERT: Rethinking Masked Autoencoding for Self-supervised Neurological Pretraining [24.641328814546842]
本稿では、フーリエ領域におけるマスク付き自己エンコーディングに基づく神経信号の自己教師付き事前学習フレームワークであるNeuro-BERTを提案する。
本稿では、入力信号の一部をランダムにマスキングし、欠落した情報を予測するFourier Inversion Prediction (FIP)と呼ばれる新しい事前学習タスクを提案する。
提案手法をいくつかのベンチマークデータセットで評価することにより,Neuro-BERTは下流神経関連タスクを大きなマージンで改善することを示す。
論文 参考訳(メタデータ) (2022-04-20T16:48:18Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。