Enhancement on Model Interpretability and Sleep Stage Scoring
Performance with A Novel Pipeline Based on Deep Neural Network
- URL: http://arxiv.org/abs/2204.03173v1
- Date: Thu, 7 Apr 2022 02:48:13 GMT
- Title: Enhancement on Model Interpretability and Sleep Stage Scoring
Performance with A Novel Pipeline Based on Deep Neural Network
- Authors: Zheng Chen, Ziwei Yang, Ming Huang, Toshiyo Tamura, Naoaki Ono, MD
Altaf-Ul-Amin, Shigehiko Kanaya
- Abstract summary: We propose a time-frequency framework for the representation learning of the electroencephalogram (EEG) following the definition of the American Academy of Sleep Medicine.
The input EEG spectrogram is partitioned into a sequence of patches in the time and frequency axes, and then input to a delicate deep learning network for further representation learning.
The proposed pipeline is validated against a large database, i.e., the Sleep Heart Health Study (SHHS), and the results demonstrate that the competitive performance for the wake, N2, and N3 stages outperforms the state-of-art works.
- Score: 4.296506281243336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Considering the natural frequency characteristics in sleep medicine, this
paper first proposes a time-frequency framework for the representation learning
of the electroencephalogram (EEG) following the definition of the American
Academy of Sleep Medicine. To meet the temporal-random and transient nature of
the defining characteristics of sleep stages, we further design a
context-sensitive flexible pipeline that automatically adapts to the attributes
of data itself. That is, the input EEG spectrogram is partitioned into a
sequence of patches in the time and frequency axes, and then input to a
delicate deep learning network for further representation learning to extract
the stage-dependent features, which are used in the classification step
finally. The proposed pipeline is validated against a large database, i.e., the
Sleep Heart Health Study (SHHS), and the results demonstrate that the
competitive performance for the wake, N2, and N3 stages outperforms the
state-of-art works, with the F1 scores being 0.93, 0.88, and 0.87,
respectively, and the proposed method has a high inter-rater reliability of
0.80 kappa. Importantly, we visualize the stage scoring process of the model
decision with the Layer-wise Relevance Propagation (LRP) method, which shows
that the proposed pipeline is more sensitive and perceivable in the
decision-making process than the baseline pipelines. Therefore, the pipeline
together with the LRP method can provide better model interpretability, which
is important for clinical support.
Related papers
- Fine-tuning -- a Transfer Learning approach [0.22344294014777952]
Missingness in Electronic Health Records (EHRs) is often hampered by the abundance of missing data in this valuable resource.
Existing deep imputation methods rely on end-to-end pipelines that incorporate both imputation and downstream analyses.
This paper explores the development of a modular, deep learning-based imputation and classification pipeline.
arXiv Detail & Related papers (2024-11-06T14:18:23Z) - MPCNN: A Novel Matrix Profile Approach for CNN-based Sleep Apnea
Classification [0.0]
Sleep apnea (SA) is a significant respiratory condition that poses a major global health challenge.
Previous studies have investigated several machine and deep learning models for electrocardiogram (ECG)-based SA diagnoses.
We propose an innovative approach to address this diagnostic gap by delving deeper into the comprehensive segments of the ECG signal.
arXiv Detail & Related papers (2023-11-25T14:39:12Z) - Phase Synchrony Component Self-Organization in Brain Computer Interface [3.2116198597240846]
Phase synchrony information plays a crucial role in analyzing functional brain connectivity and identifying brain activities.
We propose the concept of phase synchrony component self-organization, which enables the adaptive learning of data-dependent spatial filters.
Based on this concept, the first deep learning end-to-end network is developed, which directly extracts phase synchrony-based features from raw EEG signals.
arXiv Detail & Related papers (2023-09-21T09:42:16Z) - Transparency in Sleep Staging: Deep Learning Method for EEG Sleep Stage
Classification with Model Interpretability [5.747465732334616]
This study presents an end-to-end deep learning (DL) model which integrates squeeze and excitation blocks within the residual network to extract features and stacked Bi-LSTM to understand complex temporal dependencies.
A distinctive aspect of this study is the adaptation of GradCam for sleep staging, marking the first instance of an explainable DL model in this domain with alignment of its decision-making with sleep expert's insights.
arXiv Detail & Related papers (2023-09-10T17:56:03Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Interpreting Deep Learning Models for Epileptic Seizure Detection on EEG
signals [4.748221780751802]
Deep Learning (DL) is often considered the state-of-the art for Artificial Intelligence-based medical decision support.
It remains sparsely implemented in clinical practice and poorly trusted by clinicians due to insufficient interpretability of neural network models.
We have tackled this issue by developing interpretable DL models in the context of online detection of epileptic seizure, based on EEG signal.
arXiv Detail & Related papers (2020-12-22T11:10:23Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.