Generalized Multi-Objective Reinforcement Learning with Envelope Updates in URLLC-enabled Vehicular Networks
- URL: http://arxiv.org/abs/2405.11331v1
- Date: Sat, 18 May 2024 16:31:32 GMT
- Title: Generalized Multi-Objective Reinforcement Learning with Envelope Updates in URLLC-enabled Vehicular Networks
- Authors: Zijiang Yan, Hina Tabassum,
- Abstract summary: We develop a novel multi-objective reinforcement learning framework to jointly optimize wireless network selection and autonomous driving policies.
The proposed framework is designed to maximize the traffic flow and minimize collisions by controlling the vehicle's motion dynamics.
The proposed policies enable autonomous vehicles to adopt safe driving behaviors with improved connectivity.
- Score: 12.323383132739195
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We develop a novel multi-objective reinforcement learning (MORL) framework to jointly optimize wireless network selection and autonomous driving policies in a multi-band vehicular network operating on conventional sub-6GHz spectrum and Terahertz frequencies. The proposed framework is designed to 1. maximize the traffic flow and 2. minimize collisions by controlling the vehicle's motion dynamics (i.e., speed and acceleration), and enhance the ultra-reliable low-latency communication (URLLC) while minimizing handoffs (HOs). We cast this problem as a multi-objective Markov Decision Process (MOMDP) and develop solutions for both predefined and unknown preferences of the conflicting objectives. Specifically, deep-Q-network and double deep-Q-network-based solutions are developed first that consider scalarizing the transportation and telecommunication rewards using predefined preferences. We then develop a novel envelope MORL solution which develop policies that address multiple objectives with unknown preferences to the agent. While this approach reduces reliance on scalar rewards, policy effectiveness varying with different preferences is a challenge. To address this, we apply a generalized version of the Bellman equation and optimize the convex envelope of multi-objective Q values to learn a unified parametric representation capable of generating optimal policies across all possible preference configurations. Following an initial learning phase, our agent can execute optimal policies under any specified preference or infer preferences from minimal data samples.Numerical results validate the efficacy of the envelope-based MORL solution and demonstrate interesting insights related to the inter-dependency of vehicle motion dynamics, HOs, and the communication data rate. The proposed policies enable autonomous vehicles to adopt safe driving behaviors with improved connectivity.
Related papers
- Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
We propose a distributed collaborative beamforming (DCB)-based uplink communication paradigm for enabling ground-space direct communications.
DCB treats the terminals that are unable to establish efficient direct connections with the low Earth orbit (LEO) satellites as distributed antennas.
We propose an evolutionary multi-objective deep reinforcement learning algorithm to obtain the desirable policies.
arXiv Detail & Related papers (2024-04-11T03:13:02Z) - Scaling Pareto-Efficient Decision Making Via Offline Multi-Objective RL [22.468486569700236]
The goal of multi-objective reinforcement learning (MORL) is to learn policies that simultaneously optimize multiple competing objectives.
We propose a new data-driven setup for offline MORL, where we wish to learn a preference-agnostic policy agent.
PEDA is a family of offline MORL algorithms that builds and extends Decision Transformers via a novel preference-and-return-conditioned policy.
arXiv Detail & Related papers (2023-04-30T20:15:26Z) - Efficient Domain Coverage for Vehicles with Second-Order Dynamics via
Multi-Agent Reinforcement Learning [9.939081691797858]
We present a reinforcement learning (RL) approach for the multi-agent efficient domain coverage problem involving agents with second-order dynamics.
Our proposed network architecture includes the incorporation of LSTM and self-attention, which allows the trained policy to adapt to a variable number of agents.
arXiv Detail & Related papers (2022-11-11T01:59:12Z) - PD-MORL: Preference-Driven Multi-Objective Reinforcement Learning
Algorithm [0.18416014644193063]
We propose a novel MORL algorithm that trains a single universal network to cover the entire preference space scalable to continuous robotic tasks.
PD-MORL achieves up to 25% larger hypervolume for challenging continuous control tasks and uses an order of magnitude fewer trainable parameters compared to prior approaches.
arXiv Detail & Related papers (2022-08-16T19:23:02Z) - Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies [14.518558523319518]
Vehicle-to-Infrastructure (V2I) communication is becoming critical for the enhanced reliability of autonomous vehicles (AVs)
It is critical to simultaneously optimize the AVs' network selection and driving policies in order to minimize road collisions.
We develop a reinforcement learning framework to characterize efficient network selection and autonomous driving policies.
arXiv Detail & Related papers (2022-08-03T04:33:02Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
This work aims to improve data efficiency of multi-agent control by model-based learning.
We consider networked systems where agents are cooperative and communicate only locally with their neighbors.
In our method, each agent learns a dynamic model to predict future states and broadcast their predictions by communication, and then the policies are trained under the model rollouts.
arXiv Detail & Related papers (2022-07-13T23:52:14Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Multi-path Neural Networks for On-device Multi-domain Visual
Classification [55.281139434736254]
This paper proposes a novel approach to automatically learn a multi-path network for multi-domain visual classification on mobile devices.
The proposed multi-path network is learned from neural architecture search by applying one reinforcement learning controller for each domain to select the best path in the super-network created from a MobileNetV3-like search space.
The determined multi-path model selectively shares parameters across domains in shared nodes while keeping domain-specific parameters within non-shared nodes in individual domain paths.
arXiv Detail & Related papers (2020-10-10T05:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.