Capacitively coupled distinct mechanical resonators for room temperature
phonon-cavity electromechanics
- URL: http://arxiv.org/abs/2204.04641v1
- Date: Sun, 10 Apr 2022 09:55:07 GMT
- Title: Capacitively coupled distinct mechanical resonators for room temperature
phonon-cavity electromechanics
- Authors: Alok Pokharel, Hao Xu, Srisaran Venkatachalam, Eddy Collin, and Xin
Zhou
- Abstract summary: We present a room temperature phonon-cavity electromechanical system, consisting of two distinct resonators.
We demonstrate electromechanically induced transparency and amplification in a two-tone driving scheme.
Our results open up new possibilities in the study of phonon-cavity based signal processing in the classical and potentially in the future in the quantum regimes.
- Score: 4.0571196985616425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coupled electromechanical resonators that can be independently
driven/detected and easily integrated with external circuits are essential for
exploring mechanical modes based signal processing. Here, we present a room
temperature phonon-cavity electromechanical system, consisting of two distinct
resonators: a silicon nitride electromechanical drum capacitively coupled to an
aluminum one. We demonstrate electromechanically induced transparency and
amplification in a two-tone driving scheme and observe the phonon-cavity force
affecting the mechanical damping rates of both movable objects. We also develop
an analytical model based on linearly coupled motion equations, which captures
the optomechanical features in the classical limit and enables to fit
quantitatively our measurements. Our results open up new possibilities in the
study of phonon-cavity based signal processing in the classical and potentially
in the future in the quantum regimes.
Related papers
- Optimizing Entanglement in Nanomechanical Resonators through Quantum Squeezing and Parametric Amplification [0.0]
We propose a scheme that optimize entanglement in nanomechanical resonators through quantum state transfer of squeezed fields assisted by radiation pressure.
The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Simultaneous photon and phonon lasing in a two-tone driven optomechanical system [1.81283871144609]
We show how to achieve simultaneous lasing of photons and phonons in optomechanical setups.
Our work paves the way for the development of novel strategies for the optimisation of optomechanical interactions.
arXiv Detail & Related papers (2024-10-03T17:16:41Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Strong mechanical squeezing in a microcavity with double quantum wells [0.0]
In a hybrid quantum system composed of two quantum wells placed inside a cavity with a moving end mirror pumped by bichromatic coherent light, we address the formation of squeezed states of a mechanical resonator.
We show that the robustness of this squeezing against thermal fluctuations is important for practical applications of such systems.
arXiv Detail & Related papers (2023-02-01T16:00:55Z) - Nonreciprocal enhancement of remote entanglement between nonidentical
mechanical oscillators [3.615369748154691]
Entanglement between distant massive mechanical oscillators is of particular interest in quantum-enabled devices.
We show how to achieve nonreciprocal remote entanglement between two spatially separated mechanical oscillators in a cascaded optomechanical configuration.
Our work provides an enticing new opportunity to explore the nonclassical correlations between distant massive objects.
arXiv Detail & Related papers (2022-08-22T01:33:21Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Enhanced Cavity Optomechanics with Quantum-well Exciton Polaritons [0.0]
microresonators embed quantum wells can host excitonic, optical and mechanical modes at once.
We investigate the case where the system operates in the strong exciton-photon coupling regime.
We predict an enhancement of polariton-phonon interactions by two orders of magnitude with respect to mere optomechanical coupling.
arXiv Detail & Related papers (2022-02-24T13:26:19Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.