A Spiking Neural Network based on Neural Manifold for Augmenting
Intracortical Brain-Computer Interface Data
- URL: http://arxiv.org/abs/2204.05132v1
- Date: Sat, 26 Mar 2022 15:32:31 GMT
- Title: A Spiking Neural Network based on Neural Manifold for Augmenting
Intracortical Brain-Computer Interface Data
- Authors: Shengjie Zheng, Wenyi Li, Lang Qian, Chenggang He, Xiaojian Li
- Abstract summary: Brain-computer interfaces (BCIs) transform neural signals in the brain into in-structions to control external devices.
With the advent of advanced machine learning methods, the capability of brain-computer interfaces has been enhanced like never before.
Here, we use spiking neural networks (SNN) as data generators.
- Score: 5.039813366558306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain-computer interfaces (BCIs), transform neural signals in the brain into
in-structions to control external devices. However, obtaining sufficient
training data is difficult as well as limited. With the advent of advanced
machine learning methods, the capability of brain-computer interfaces has been
enhanced like never before, however, these methods require a large amount of
data for training and thus require data augmentation of the limited data
available. Here, we use spiking neural networks (SNN) as data generators. It is
touted as the next-generation neu-ral network and is considered as one of the
algorithms oriented to general artifi-cial intelligence because it borrows the
neural information processing from bio-logical neurons. We use the SNN to
generate neural spike information that is bio-interpretable and conforms to the
intrinsic patterns in the original neural data. Ex-periments show that the
model can directly synthesize new spike trains, which in turn improves the
generalization ability of the BCI decoder. Both the input and output of the
spiking neural model are spike information, which is a brain-inspired
intelligence approach that can be better integrated with BCI in the future.
Related papers
- A frugal Spiking Neural Network for unsupervised classification of continuous multivariate temporal data [0.0]
Spiking Neural Networks (SNNs) are neuromorphic and use more biologically plausible neurons with evolving membrane potentials.
We introduce here a frugal single-layer SNN designed for fully unsupervised identification and classification of multivariate temporal patterns in continuous data.
arXiv Detail & Related papers (2024-08-08T08:15:51Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Deep Learning for real-time neural decoding of grasp [0.0]
We present a Deep Learning-based approach to the decoding of neural signals for grasp type classification.
The main goal of the presented approach is to improve over state-of-the-art decoding accuracy without relying on any prior neuroscience knowledge.
arXiv Detail & Related papers (2023-11-02T08:26:29Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
Neuromorphic computing relies on spike-based, energy-efficient communication.
We develop a tool to identify suitable configurations for neuron-based encoding of sample-based data into spike trains.
The WaLiN-GUI is provided open source and with documentation.
arXiv Detail & Related papers (2023-10-25T20:34:08Z) - PTGB: Pre-Train Graph Neural Networks for Brain Network Analysis [39.16619345610152]
We propose PTGB, a GNN pre-training framework that captures intrinsic brain network structures, regardless of clinical outcomes, and is easily adaptable to various downstream tasks.
PTGB comprises two key components: (1) an unsupervised pre-training technique designed specifically for brain networks, which enables learning from large-scale datasets without task-specific labels; (2) a data-driven parcellation atlas mapping pipeline that facilitates knowledge transfer across datasets with different ROI systems.
arXiv Detail & Related papers (2023-05-20T21:07:47Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Learning from Event Cameras with Sparse Spiking Convolutional Neural
Networks [0.0]
Convolutional neural networks (CNNs) are now the de facto solution for computer vision problems.
We propose an end-to-end biologically inspired approach using event cameras and spiking neural networks (SNNs)
Our method enables the training of sparse spiking neural networks directly on event data, using the popular deep learning framework PyTorch.
arXiv Detail & Related papers (2021-04-26T13:52:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.