Generic Multimodal Spatially Graph Network for Spatially Embedded Network Representation Learning
- URL: http://arxiv.org/abs/2502.00530v1
- Date: Sat, 01 Feb 2025 19:05:48 GMT
- Title: Generic Multimodal Spatially Graph Network for Spatially Embedded Network Representation Learning
- Authors: Xudong Fan, Jürgen Hackl,
- Abstract summary: A Generic Multimodal Spatially Graph Convolutional Network (GMu-SGCN) is developed for efficient representation of spatially embedded networks.
The developed GMu-SGCN can improve accuracy of the edge existence prediction task by 37.1% compared to a GraphSAGE model.
- Score: 2.07180164747172
- License:
- Abstract: Spatially embedded networks (SENs) represent a special type of complex graph, whose topologies are constrained by the networks' embedded spatial environments. The graph representation of such networks is thereby influenced by the embedded spatial features of both nodes and edges. Accurate network representation of the graph structure and graph features is a fundamental task for various graph-related tasks. In this study, a Generic Multimodal Spatially Graph Convolutional Network (GMu-SGCN) is developed for efficient representation of spatially embedded networks. The developed GMu-SGCN model has the ability to learn the node connection pattern via multimodal node and edge features. In order to evaluate the developed model, a river network dataset and a power network dataset have been used as test beds. The river network represents the naturally developed SENs, whereas the power network represents a man-made network. Both types of networks are heavily constrained by the spatial environments and uncertainties from nature. Comprehensive evaluation analysis shows the developed GMu-SGCN can improve accuracy of the edge existence prediction task by 37.1\% compared to a GraphSAGE model which only considers the node's position feature in a power network test bed. Our model demonstrates the importance of considering the multidimensional spatial feature for spatially embedded network representation.
Related papers
- Hyperbolic Benchmarking Unveils Network Topology-Feature Relationship in GNN Performance [0.5416466085090772]
We introduce a comprehensive benchmarking framework for graph machine learning.
We generate synthetic networks with realistic topological properties and node feature vectors.
Results highlight the dependency of model performance on the interplay between network structure and node features.
arXiv Detail & Related papers (2024-06-04T20:40:06Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
We introduce a simple, efficient, and clustering-oriented model based on unsupervised textbfGraph Attention textbfAutotextbfEncoder for community detection in attributed networks.
The proposed model adeptly learns representations from both the network's topology and attribute information, simultaneously addressing dual objectives: reconstruction and community discovery.
arXiv Detail & Related papers (2023-11-21T20:45:55Z) - Network Intrusion Detection with Edge-Directed Graph Multi-Head Attention Networks [13.446986347747325]
This paper proposes novel Edge-Directed Graph Multi-Head Attention Networks (EDGMAT) for network intrusion detection.
The proposed EDGMAT model introduces a multi-head attention mechanism into the intrusion detection model. Additional weight learning is realized through the combination of a multi-head attention mechanism and edge features.
arXiv Detail & Related papers (2023-10-26T12:30:11Z) - A parameterised model for link prediction using node centrality and
similarity measure based on graph embedding [5.507008181141738]
Link prediction is a key aspect of graph machine learning.
It involves predicting new links that may form between network nodes.
Existing models have significant shortcomings.
We present the Node Centrality and Similarity Based.
Model (NCSM), a novel method for link prediction tasks.
arXiv Detail & Related papers (2023-09-11T13:13:54Z) - Learning Asymmetric Embedding for Attributed Networks via Convolutional
Neural Network [19.611523749659355]
We propose a novel deep asymmetric attributed network embedding model based on convolutional graph neural network, called AAGCN.
The main idea is to maximally preserve the asymmetric proximity and asymmetric similarity of directed attributed networks.
We test the performance of AAGCN on three real-world networks for network reconstruction, link prediction, node classification and visualization tasks.
arXiv Detail & Related papers (2022-02-13T13:35:15Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Spectral Embedding of Graph Networks [76.27138343125985]
We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure.
The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2020-09-30T04:59:10Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.