論文の概要: A DNN Framework for Learning Lagrangian Drift With Uncertainty
- arxiv url: http://arxiv.org/abs/2204.05891v1
- Date: Tue, 12 Apr 2022 15:36:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-13 16:10:14.657755
- Title: A DNN Framework for Learning Lagrangian Drift With Uncertainty
- Title(参考訳): 不確実性のあるラグランジアンドリフト学習のためのDNNフレームワーク
- Authors: Joseph Jenkins, Adeline Paiement, Yann Ourmi\`eres, Julien Le Sommer,
Jacques Verron, Cl\'ement Ubelmann and Herv\'e Glotin
- Abstract要約: ラグランジュの漂流の復元は、しばしばデータの中で未解決の物理的現象のために不確実である。
フレキシブルな環境で確率的ドリフトをモデル化するための、純粋にデータ駆動のフレームワークを提案する。
我々は,海洋循環モデルシミュレーションに基づいて,地層密度マップを生成する。
- 参考スコア(独自算出の注目度): 0.5541644538483949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructions of Lagrangian drift, for example for objects lost at sea, are
often uncertain due to unresolved physical phenomena within the data.
Uncertainty is usually overcome by introducing stochasticity into the drift,
but this approach requires specific assumptions for modelling uncertainty. We
remove this constraint by presenting a purely data-driven framework for
modelling probabilistic drift in flexible environments. We train a CNN to
predict the temporal evolution of probability density maps of particle
locations from $t$ to $t+1$ given an input velocity field. We generate
groundtruth density maps on the basis of ocean circulation model simulations by
simulating uncertainty in the initial position of particle trajectories.
Several loss functions for regressing the predicted density maps are tested.
Through evaluating our model on unseen velocities from a different year, we
find its outputs to be in good agreement with numerical simulations, suggesting
satisfactory generalisation to different dynamical situations.
- Abstract(参考訳): ラグランジュの漂流の復元、例えば海で失われた物体は、しばしばデータの中で未解決の物理的現象のために不確実である。
不確実性は通常、ドリフトに確率性を導入することで克服されるが、このアプローチは不確実性をモデル化するための特定の仮定を必要とする。
柔軟性のある環境で確率的ドリフトをモデリングするための純粋データ駆動フレームワークを提示して、この制約を取り除く。
入力速度場が与えられた場合、粒子位置の確率密度マップの時間的発展を$t$から$t+1$に予測するためにCNNを訓練する。
粒子軌道の初期位置の不確かさをシミュレートすることにより,海洋循環モデルシミュレーションに基づく地中構造密度マップを生成する。
予測密度マップを回帰するいくつかの損失関数をテストする。
異なる年を経た非知覚速度に関するモデルを評価することにより,その出力は数値シミュレーションとよく一致し,異なる動的状況に対する十分な一般化を示唆する。
関連論文リスト
- A probabilistic framework for learning non-intrusive corrections to long-time climate simulations from short-time training data [12.566163525039558]
本稿では,カオスシステムの非侵襲的に解けない長期シミュレーションにニューラルネットワークモデルをトレーニングするための戦略を提案する。
トレーニングで見られるデータより30倍以上長い時間的地平線上での異方性統計を正確に予測する能力を示す。
論文 参考訳(メタデータ) (2024-08-02T18:34:30Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
我々は、前方物理シミュレーションと後方勾配近似とニューラルネットワークを組み合わせた新しいディープラーニングパイプラインであるDeepSimHOを紹介する。
提案手法は, 評価の安定性を著しく向上し, テスト時間最適化よりも優れた効率性を実現する。
論文 参考訳(メタデータ) (2023-10-11T05:34:36Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Strategic Geosteeering Workflow with Uncertainty Quantification and Deep
Learning: A Case Study on the Goliat Field [0.0]
本稿では,オフラインとオンラインのフェーズからなる実践的なワークフローを提案する。
オフラインフェーズには、不確実な事前ニアウェルジオモデルのトレーニングと構築が含まれている。
オンラインフェーズでは、フレキシブルな反復アンサンブルスムーズ(FlexIES)を使用して、極深電磁データのリアルタイム同化を行う。
論文 参考訳(メタデータ) (2022-10-27T15:38:26Z) - Robust Neural Posterior Estimation and Statistical Model Criticism [1.5749416770494706]
モデラーはシミュレータを真のデータ生成プロセスの理想主義的な表現として扱わなければならない。
本研究では,シミュレーションモデルにおけるブラックボックスパラメータ推論を可能にするアルゴリズムのクラスであるNPEを再検討する。
一方,NPEを経時的に用いた場合,不特定性の存在は信頼できない推論につながることが判明した。
論文 参考訳(メタデータ) (2022-10-12T20:06:55Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
不確実ドリフト検出(UDD)は、真のラベルにアクセスすることなくドリフトを検出することができる。
入力データに基づくドリフト検出とは対照的に,現在の入力データが予測モデルの特性に与える影響を考察する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-05T08:56:36Z) - Short- and long-term prediction of a chaotic flow: A physics-constrained
reservoir computing approach [5.37133760455631]
乱流せん断流モデルにおける極端な事象や長期速度統計を時間精度で予測する,貯留層計算に基づく物理制約型機械学習手法を提案する。
両手法の組み合わせは, 乱流の自己持続過程モデルにおいて, 速度統計を正確に再現し, 極端な事象の発生と振幅を予測することができることを示す。
論文 参考訳(メタデータ) (2021-02-15T12:29:09Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。