論文の概要: Random Manifold Sampling and Joint Sparse Regularization for Multi-label
Feature Selection
- arxiv url: http://arxiv.org/abs/2204.06445v3
- Date: Thu, 30 Mar 2023 13:00:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 18:26:53.234519
- Title: Random Manifold Sampling and Joint Sparse Regularization for Multi-label
Feature Selection
- Title(参考訳): マルチラベル特徴選択のためのランダム多様体サンプリングとジョイントスパース正規化
- Authors: Haibao Li and Hongzhi Zhai
- Abstract要約: 本稿では,$ell_2,1$および$ell_F$正規化の連立制約付き最適化問題を解くことで,最も関連性の高いいくつかの特徴を得ることができる。
実世界のデータセットの比較実験により,提案手法が他の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-label learning is usually used to mine the correlation between features
and labels, and feature selection can retain as much information as possible
through a small number of features. $\ell_{2,1}$ regularization method can get
sparse coefficient matrix, but it can not solve multicollinearity problem
effectively. The model proposed in this paper can obtain the most relevant few
features by solving the joint constrained optimization problems of $\ell_{2,1}$
and $\ell_{F}$ regularization.In manifold regularization, we implement random
walk strategy based on joint information matrix, and get a highly robust
neighborhood graph.In addition, we given the algorithm for solving the model
and proved its convergence.Comparative experiments on real-world data sets show
that the proposed method outperforms other methods.
- Abstract(参考訳): マルチラベル学習は通常、特徴とラベルの相関関係をマイニングするために使用され、少数の特徴を通して可能な限り多くの情報を保持することができる。
$\ell_{2,1}$正規化法はスパース係数行列を得ることができるが、多重線型性問題を効果的に解くことはできない。
The model proposed in this paper can obtain the most relevant few features by solving the joint constrained optimization problems of $\ell_{2,1}$ and $\ell_{F}$ regularization.In manifold regularization, we implement random walk strategy based on joint information matrix, and get a highly robust neighborhood graph.In addition, we given the algorithm for solving the model and proved its convergence.Comparative experiments on real-world data sets show that the proposed method outperforms other methods.
関連論文リスト
- Embedded Multi-label Feature Selection via Orthogonal Regression [45.55795914923279]
少なくとも2乗回帰に基づく最先端の組込みマルチラベル特徴選択アルゴリズムは、マルチラベルデータに十分な識別情報を保存できない。
複数ラベルの特徴選択を容易にするために, 組込み多ラベル特徴選択法を提案する。
10個の多ラベルデータセットの大規模な実験結果から,GRROORの有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T06:18:40Z) - A model-free feature selection technique of feature screening and random
forest based recursive feature elimination [0.0]
質量特徴を持つ超高次元データのモデルフリー特徴選択法を提案する。
提案手法は選択整合性を示し, 弱正則条件下では$L$整合性を示す。
論文 参考訳(メタデータ) (2023-02-15T03:39:16Z) - A distribution-free mixed-integer optimization approach to hierarchical modelling of clustered and longitudinal data [0.0]
我々は,新しいデータポイントに対するクラスタ効果を評価する革新的なアルゴリズムを導入し,このモデルのロバスト性や精度を高める。
このアプローチの推論的および予測的効果は、学生のスコアリングとタンパク質発現に適用することでさらに説明される。
論文 参考訳(メタデータ) (2023-02-06T23:34:51Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
構成問題の複雑さを軽減するために,MSVR (Multi-block-probe Variance Reduced) という新しい手法を提案する。
本研究の結果は, 試料の複雑さの順序や強靭性への依存など, 様々な面で先行して改善された。
論文 参考訳(メタデータ) (2022-07-18T12:03:26Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - On the Adversarial Robustness of LASSO Based Feature Selection [72.54211869067979]
検討されたモデルでは、悪意のある敵がデータセット全体を観察し、レスポンス値やフィーチャーマトリックスを慎重に修正する。
両レベルの最適化問題として、敵の修正戦略を定式化する。
合成および実データを用いた数値的な例は,本手法が効率的かつ効果的であることを示している。
論文 参考訳(メタデータ) (2020-10-20T05:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。