Finding MNEMON: Reviving Memories of Node Embeddings
- URL: http://arxiv.org/abs/2204.06963v1
- Date: Thu, 14 Apr 2022 13:44:26 GMT
- Title: Finding MNEMON: Reviving Memories of Node Embeddings
- Authors: Yun Shen and Yufei Han and Zhikun Zhang and Min Chen and Ting Yu and
Michael Backes and Yang Zhang and Gianluca Stringhini
- Abstract summary: We show that an adversary can recover edges with decent accuracy by only gaining access to the node embedding matrix of the original graph.
We demonstrate the effectiveness and applicability of our graph recovery attack through extensive experiments.
- Score: 39.206574462957136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous security research efforts orbiting around graphs have been
exclusively focusing on either (de-)anonymizing the graphs or understanding the
security and privacy issues of graph neural networks. Little attention has been
paid to understand the privacy risks of integrating the output from graph
embedding models (e.g., node embeddings) with complex downstream machine
learning pipelines. In this paper, we fill this gap and propose a novel
model-agnostic graph recovery attack that exploits the implicit graph
structural information preserved in the embeddings of graph nodes. We show that
an adversary can recover edges with decent accuracy by only gaining access to
the node embedding matrix of the original graph without interactions with the
node embedding models. We demonstrate the effectiveness and applicability of
our graph recovery attack through extensive experiments.
Related papers
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
Continual learning on graphs tackles the problem of training a graph neural network (GNN) where graph data arrive in a streaming fashion.
Traditional continual learning strategies such as Experience Replay can be adapted to streaming graphs.
We propose TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning framework.
arXiv Detail & Related papers (2024-01-05T22:22:13Z) - Joint graph learning from Gaussian observations in the presence of
hidden nodes [26.133725549667734]
We propose a joint graph learning method that takes into account the presence of hidden (latent) variables.
We exploit the structure resulting from the previous considerations to propose a convex optimization problem.
We compare the proposed algorithm with different baselines and evaluate its performance over synthetic and real-world graphs.
arXiv Detail & Related papers (2022-12-04T13:03:41Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
We propose a principled new way for obtaining unbiased representations by learning from an underlying bias-free graph.
Based on this new perspective, we propose two complementary methods for uncovering such an underlying graph.
arXiv Detail & Related papers (2021-10-26T18:44:37Z) - Inference Attacks Against Graph Neural Networks [33.19531086886817]
Graph embedding is a powerful tool to solve the graph analytics problem.
While sharing graph embedding is intriguing, the associated privacy risks are unexplored.
We systematically investigate the information leakage of the graph embedding by mounting three inference attacks.
arXiv Detail & Related papers (2021-10-06T10:08:11Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.