Characterizing metastable states with the help of machine learning
- URL: http://arxiv.org/abs/2204.07391v1
- Date: Fri, 15 Apr 2022 09:03:29 GMT
- Title: Characterizing metastable states with the help of machine learning
- Authors: Pietro Novelli, Luigi Bonati, Massimiliano Pontil and Michele
Parrinello
- Abstract summary: We first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations.
This allows the different metastable states of the system to be located and organized hierarchically.
The physical descriptors that characterize metastable states are discovered by means of a machine learning method.
- Score: 26.851436041478866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Present-day atomistic simulations generate long trajectories of ever more
complex systems. Analyzing these data, discovering metastable states, and
uncovering their nature is becoming increasingly challenging. In this paper, we
first use the variational approach to conformation dynamics to discover the
slowest dynamical modes of the simulations. This allows the different
metastable states of the system to be located and organized hierarchically. The
physical descriptors that characterize metastable states are discovered by
means of a machine learning method. We show in the cases of two proteins,
Chignolin and Bovine Pancreatic Trypsin Inhibitor, how such analysis can be
effortlessly performed in a matter of seconds. Another strength of our approach
is that it can be applied to the analysis of both unbiased and biased
simulations.
Related papers
- Inferring stochastic dynamics with growth from cross-sectional data [3.3748750222488657]
We present a novel approach, emphunbalanced probability flow inference, that addresses the challenge for biological processes modelled as dynamics with growth.<n>By leveraging a Lagrangian formulation of the Fokker-Planck equation, our method accurately disentangles drift from intrinsic noise and growth.
arXiv Detail & Related papers (2025-05-19T14:51:47Z) - Identifiability Analysis of Linear ODE Systems with Hidden Confounders [45.14890063421295]
This paper presents a systematic analysis of identifiability in linear ODE systems incorporating hidden confounders.
In the first case, latent confounders exhibit no causal relationships, yet their evolution adheres to specific forms.
Subsequently, we extend this analysis to encompass scenarios where hidden confounders exhibit causal dependencies.
arXiv Detail & Related papers (2024-10-29T10:15:56Z) - Inferring Kernel $ε$-Machines: Discovering Structure in Complex Systems [49.1574468325115]
We introduce causal diffusion components that encode the kernel causal-state estimates as a set of coordinates in a reduced dimension space.
We show how each component extracts predictive features from data and demonstrate their application on four examples.
arXiv Detail & Related papers (2024-10-01T21:14:06Z) - Sparse identification of quasipotentials via a combined data-driven method [4.599618895656792]
We leverage on machine learning via the combination of two data-driven techniques, namely a neural network and a sparse regression algorithm, to obtain symbolic expressions of quasipotential functions.
We show that our approach discovers a parsimonious quasipotential equation for an archetypal model with a known exact quasipotential and for the dynamics of a nanomechanical resonator.
arXiv Detail & Related papers (2024-07-06T11:27:52Z) - Morphological Symmetries in Robotics [45.32599550966704]
morphological symmetries are intrinsic properties of the robot's morphology.<n>These symmetries extend to the robot's state space and sensor measurements.<n>For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models.<n>In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics.
arXiv Detail & Related papers (2024-02-23T17:21:21Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Learning inducing points and uncertainty on molecular data by scalable
variational Gaussian processes [0.0]
We show that variational learning of the inducing points in a molecular descriptor space improves the prediction of energies and atomic forces on two molecular dynamics datasets.
We extend our study to a large molecular crystal system, showing that variational GP models perform well for predicting atomic forces by efficiently learning a sparse representation of the dataset.
arXiv Detail & Related papers (2022-07-16T10:41:41Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
We show how to exploit the differentiability of Gaussian processes to create a state-dependent linearized approximation of the true continuous dynamics.
We validate our approach by iteratively learning the system dynamics of an unstable system such as a 9-D segway.
arXiv Detail & Related papers (2021-03-08T05:08:47Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Using machine-learning modelling to understand macroscopic dynamics in a
system of coupled maps [0.0]
We consider a case study the macroscopic motion emerging from a system of globally coupled maps.
We build a coarse-grained Markov process for the macroscopic dynamics both with a machine learning approach and with a direct numerical computation of the transition probability of the coarse-grained process.
We are able to infer important information about the effective dimension of the attractor, the persistence of memory effects and the multi-scale structure of the dynamics.
arXiv Detail & Related papers (2020-11-08T15:38:12Z) - Exploring the potential of transfer learning for metamodels of
heterogeneous material deformation [0.0]
We show that transfer learning can be used to leverage both low-fidelity simulation data and simulation data.
We extend Mechanical MNIST, our open source benchmark dataset of heterogeneous material undergoing large deformation.
We show that transferring the knowledge stored in metamodels trained on these low-fidelity simulation results can vastly improve the performance of metamodels used to predict the results of high-fidelity simulations.
arXiv Detail & Related papers (2020-10-28T12:43:46Z) - Bayesian Force Fields from Active Learning for Simulation of
Inter-Dimensional Transformation of Stanene [3.708456605408296]
We present a way to dramatically accelerate Gaussian process models for interatomic force fields based on many-body kernels.
This allows for automated active learning of models combining near-quantum accuracy, built-in uncertainty, and constant cost of evaluation.
arXiv Detail & Related papers (2020-08-26T20:27:19Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.