論文の概要: Towards cost-effective and resource-aware aggregation at Edge for
Federated Learning
- arxiv url: http://arxiv.org/abs/2204.07767v2
- Date: Sat, 27 Jan 2024 02:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 01:18:22.976982
- Title: Towards cost-effective and resource-aware aggregation at Edge for
Federated Learning
- Title(参考訳): フェデレートラーニングのためのエッジにおける費用対効果とリソース対応アグリゲーション
- Authors: Ahmad Faraz Khan, Yuze Li, Xinran Wang, Sabaat Haroon, Haider Ali, Yue
Cheng, Ali R. Butt, and Ali Anwar
- Abstract要約: Federated Learning(FL)は、ソースのデータ計算によるプライバシとデータ転送コストに対処する機械学習アプローチである。
この作業はEdgeで最初に適応的なFLアグリゲータを提案し、ユーザはコストと効率のトレードオフを管理することができる。
- 参考スコア(独自算出の注目度): 6.553945918984866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a machine learning approach that addresses privacy
and data transfer costs by computing data at the source. It's particularly
popular for Edge and IoT applications where the aggregator server of FL is in
resource-capped edge data centers for reducing communication costs. Existing
cloud-based aggregator solutions are resource-inefficient and expensive at the
Edge, leading to low scalability and high latency. To address these challenges,
this study compares prior and new aggregation methodologies under the changing
demands of IoT and Edge applications. This work is the first to propose an
adaptive FL aggregator at the Edge, enabling users to manage the cost and
efficiency trade-off. An extensive comparative analysis demonstrates that the
design improves scalability by up to 4X, time efficiency by 8X, and reduces
costs by more than 2X compared to extant cloud-based static methodologies.
- Abstract(参考訳): Federated Learning(FL)は、ソースのデータ計算によるプライバシとデータ転送コストに対処する機械学習アプローチである。
FLのアグリゲータサーバが通信コストを削減するためにリソースをカプセル化したエッジデータセンタにあるエッジとIoTアプリケーションでは特に人気があります。
既存のクラウドベースのアグリゲータソリューションは、Edgeではリソース非効率でコストがかかるため、スケーラビリティが低く、レイテンシも高い。
これらの課題に対処するため、IoTおよびEdgeアプリケーションの要求の変化の下で、事前および新しいアグリゲーション方法論を比較した。
この作業はEdgeに適応的なFLアグリゲータを提案し、ユーザはコストと効率のトレードオフを管理することができる。
広範な比較分析によって、設計によってスケーラビリティが最大4倍向上し、時間効率が8倍向上し、既存のクラウドベースの静的方法論と比較して2倍以上のコスト削減が示されている。
関連論文リスト
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL)は、モバイルデバイス上で機械学習モデルをトレーニングするためのプライバシー保護フレームワークを提供する。
従来のFLアルゴリズム、例えばFedAvgはこれらのデバイスに重い通信負荷を課す。
エッジデバイスをエッジサーバに接続し,エッジサーバをピアツーピア(P2P)エッジバックホールを介して相互接続する2層HFELシステムを提案する。
我々の目標は、戦略的資源配分とトポロジ設計により、HFELシステムの訓練効率を向上させることである。
論文 参考訳(メタデータ) (2024-09-29T01:48:04Z) - Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
本稿では,新しい基礎モデルのための統合型分割学習と超次元計算フレームワークを提案する。
この新しいアプローチは通信コスト、計算負荷、プライバシーリスクを低減し、Metaverseのリソース制約されたエッジデバイスに適している。
論文 参考訳(メタデータ) (2024-08-26T17:03:14Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
本稿では,最新のエッジコンピューティングシステムにおいて,Large Language Modelsをどのように導入できるかを,ハードウェア中心のアプローチで検討する。
マイクロレベルのハードウェアベンチマークを行い、FLOPモデルと最先端のデータセンターGPUを比較し、現実的な条件下でのネットワーク利用について検討する。
論文 参考訳(メタデータ) (2023-10-04T20:27:20Z) - User Assignment and Resource Allocation for Hierarchical Federated
Learning over Wireless Networks [20.09415156099031]
階層FL(Hierarchical FL)は、効率的なリソース割り当てと適切なユーザ割り当てによって、エネルギー消費とレイテンシを低減する。
本稿では,スペクトル資源最適化アルゴリズム(SROA)とHFLのための2段階CPUアルゴリズム(TSIA)を提案する。
実験により,提案したHFLフレームワークは,エネルギーと遅延低減に関する既存の研究よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-17T12:10:39Z) - Adaptive Federated Pruning in Hierarchical Wireless Networks [69.6417645730093]
Federated Learning(FL)は、サーバがプライベートデータセットにアクセスすることなく、複数のデバイスによって更新されたモデルを集約する、プライバシ保護の分散学習フレームワークである。
本稿では,無線ネットワークにおけるHFLのモデルプルーニングを導入し,ニューラルネットワークの規模を小さくする。
提案するHFLは,モデルプルーニングを伴わないHFLと比較して学習精度が良く,通信コストが約50%削減できることを示す。
論文 参考訳(メタデータ) (2023-05-15T22:04:49Z) - Efficient and Secure Federated Learning for Financial Applications [15.04345368582332]
本稿では,フェデレート学習における通信コスト削減のための2つのスペーシング手法を提案する。
1つは、モデルパラメータ更新のための時間変化の階層的スペーシフィケーション法であり、高比のスペーシリティ後のモデル精度を維持する問題の解決である。
もう1つは、セキュアアグリゲーションフレームワークにスパシフィケーション手法を適用することである。
論文 参考訳(メタデータ) (2023-03-15T04:15:51Z) - Energy-Aware Edge Association for Cluster-based Personalized Federated
Learning [2.3262774900834606]
無線ネットワーク上のフェデレートラーニングは、プライバシ保存モデルトレーニングのために、ネットワークエッジにおけるユビキタスインテリジェンスを活用することによって、データ意識のサービスを可能にする。
我々は、類似した好みのユーザデバイスをグループ化するクラスタ化フェデレーション学習を提案し、各クラスタにパーソナライズされたモデルを提供する。
モデル精度、通信資源割り当て、エネルギー消費を共同で考慮し、精度-コストトレードオフ最適化問題を定式化する。
論文 参考訳(メタデータ) (2022-02-06T07:58:41Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Cost-Effective Federated Learning in Mobile Edge Networks [37.16466118235272]
フェデレートラーニング(FL)は、多くのモバイルデバイスが生データを共有せずに協調的にモデルを学習できる分散ラーニングパラダイムである。
本研究は,モバイルエッジネットワークにおける適応FLの設計手法を解析し,本質的な制御変数を最適に選択し,総コストを最小化する。
我々は,収束関連未知パラメータを学習するために,低コストなサンプリングベースアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-09-12T03:02:24Z) - Incentive Mechanism Design for Resource Sharing in Collaborative Edge
Learning [106.51930957941433]
5GとBeyondネットワークでは、人工知能のアプリケーションがますます普及すると予想されている。
これは、現在のクラウド中心のモデルトレーニングアプローチから、エッジラーニングとして知られるエッジコンピューティングベースの協調学習スキームへのパラダイムシフトを必要とする。
論文 参考訳(メタデータ) (2020-05-31T12:45:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。