論文の概要: Recurrent neural networks that generalize from examples and optimize by
dreaming
- arxiv url: http://arxiv.org/abs/2204.07954v1
- Date: Sun, 17 Apr 2022 08:40:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 04:01:29.840222
- Title: Recurrent neural networks that generalize from examples and optimize by
dreaming
- Title(参考訳): 例から一般化し、夢で最適化するリカレントニューラルネットワーク
- Authors: Miriam Aquaro, Francesco Alemanno, Ido Kanter, Fabrizio Durante, Elena
Agliari, Adriano Barra
- Abstract要約: オンライン学習のためのHebbの処方則に従って,ニューロン間のペア結合が構築される一般化されたホップフィールドネットワークを導入する。
ネットワークエクスペリエンスは、パターン毎にノイズの多いサンプルのサンプルで構成されたデータセットに過ぎません。
注目すべきは、睡眠メカニズムが常に正しく一般化するために必要なデータセットサイズを著しく削減することです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The gap between the huge volumes of data needed to train artificial neural
networks and the relatively small amount of data needed by their biological
counterparts is a central puzzle in machine learning. Here, inspired by
biological information-processing, we introduce a generalized Hopfield network
where pairwise couplings between neurons are built according to Hebb's
prescription for on-line learning and allow also for (suitably stylized)
off-line sleeping mechanisms. Moreover, in order to retain a learning
framework, here the patterns are not assumed to be available, instead, we let
the network experience solely a dataset made of a sample of noisy examples for
each pattern. We analyze the model by statistical-mechanics tools and we obtain
a quantitative picture of its capabilities as functions of its control
parameters: the resulting network is an associative memory for pattern
recognition that learns from examples on-line, generalizes and optimizes its
storage capacity by off-line sleeping. Remarkably, the sleeping mechanisms
always significantly reduce (up to $\approx 90\%$) the dataset size required to
correctly generalize, further, there are memory loads that are prohibitive to
Hebbian networks without sleeping (no matter the size and quality of the
provided examples), but that are easily handled by the present "rested" neural
networks.
- Abstract(参考訳): 人工ニューラルネットワークのトレーニングに必要な膨大なデータと、その生物学的データに必要な比較的少ないデータとの間のギャップは、機械学習の中心的なパズルである。
ここでは,生物情報処理に触発されて,ヘブのオンライン学習処方に従ってニューロン間のペアワイズ結合を構築し,オフライン睡眠機構(適度にスタイリッシュな)を実現する,一般化されたホップフィールドネットワークを提案する。
さらに、学習フレームワークを維持するために、ここではパターンは利用できないと仮定し、代わりに、各パターンに対するノイズの多いサンプルのサンプルからなるデータセットのみをネットワーク体験に委ねる。
我々は,統計力学ツールを用いてモデルを解析し,制御パラメータの機能としてその能力の定量的な図式を得た。
驚くべきことに、スリープ機構は常に、正しい一般化に必要なデータセットサイズを著しく削減し(約90\%$)、さらに、(提供された例のサイズや品質に関わらず)ヘビーネットワークに制限されるメモリ負荷があるが、現在の"rested"ニューラルネットワークでは容易に処理できる。
関連論文リスト
- Residual Random Neural Networks [0.0]
ランダムな重みを持つ単層フィードフォワードニューラルネットワークは、ニューラルネットワークの文献の中で繰り返されるモチーフである。
隠れたニューロンの数がデータサンプルの次元と等しくない場合でも,優れた分類結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-25T22:00:11Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Spiking representation learning for associative memories [0.0]
本稿では、教師なし表現学習と連想記憶操作を行う新しい人工スパイクニューラルネットワーク(SNN)を提案する。
モデルの構造は新皮質列状構造から派生し,隠れた表現を学習するためのフィードフォワードプロジェクションと,連想記憶を形成するための繰り返しプロジェクションを組み合わせたものである。
論文 参考訳(メタデータ) (2024-06-05T08:30:11Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Robust Generalization of Quadratic Neural Networks via Function
Identification [19.87036824512198]
一般化は、テスト分布がトレーニング分布に近いと仮定することが多い。
2次ニューラルネットワークでは、パラメータを特定できないにもかかわらず、モデルで表される関数を識別できることが示される。
論文 参考訳(メタデータ) (2021-09-22T18:02:00Z) - Dive into Layers: Neural Network Capacity Bounding using Algebraic
Geometry [55.57953219617467]
ニューラルネットワークの学習性はそのサイズと直接関連していることを示す。
入力データとニューラルネットワークのトポロジ的幾何学的複雑さを測定するためにベッチ数を用いる。
実世界のデータセットMNISTで実験を行い、分析結果と結論を検証した。
論文 参考訳(メタデータ) (2021-09-03T11:45:51Z) - Slope and generalization properties of neural networks [0.0]
十分に訓練されたニューラルネットワーク分類器の勾配分布は、一般に、完全に接続されたネットワークの層幅から独立していることを示す。
傾斜は、関連する体積を通して類似した大きさであり、滑らかに変化する。また、再スケーリングの例でも予測されるように振る舞う。
本稿では、損失関数の一部として利用したり、ネットワークトレーニング中に基準を終了させたり、複雑度の観点からデータセットをランク付けしたりといった、斜面概念の応用の可能性について論じる。
論文 参考訳(メタデータ) (2021-07-03T17:54:27Z) - Locally Sparse Networks for Interpretable Predictions [7.362415721170984]
本稿では,局所的な疎度をサンプル固有のゲーティング機構を用いて学習する,局所スパースニューラルネットワークのトレーニングフレームワークを提案する。
サンプル固有の間隔は、テキスト予測ネットワークで予測され、テキスト予測ネットワークとタンデムでトレーニングされる。
本手法は,1インスタンスあたりの機能が少ないターゲット関数の予測において,最先端のモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-11T15:46:50Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
微分可能なニューラルネットワークは、干渉することなく明示的なメモリで人工ニューラルネットワークを拡張する。
我々は、非常に効率的に訓練できるモデルを用いて、微分可能なニューラルネットワークの計算能力を実現する。
論文 参考訳(メタデータ) (2020-09-14T12:01:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。