論文の概要: A Greedy and Optimistic Approach to Clustering with a Specified
Uncertainty of Covariates
- arxiv url: http://arxiv.org/abs/2204.08205v1
- Date: Mon, 18 Apr 2022 07:54:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-19 14:35:07.141047
- Title: A Greedy and Optimistic Approach to Clustering with a Specified
Uncertainty of Covariates
- Title(参考訳): 共変量の不確かさを明示したクラスタリングへのグリーディと最適アプローチ
- Authors: Akifumi Okuno, Kohei Hattori
- Abstract要約: 我々は,経験的不確実性集合よりも優れた特徴候補を求める,欲求的で楽観的なクラスタリング(GOC)アルゴリズムを提案する。
重要な応用として、銀河系の形成過程を模した数値シミュレーションにより生成された恒星の軌道特性の合成データセットにGACアルゴリズムを適用した。
- 参考スコア(独自算出の注目度): 6.231304401179968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we examine a clustering problem in which the covariates of
each individual element in a dataset are associated with an uncertainty
specific to that element. More specifically, we consider a clustering approach
in which a pre-processing applying a non-linear transformation to the
covariates is used to capture the hidden data structure. To this end, we
approximate the sets representing the propagated uncertainty for the
pre-processed features empirically. To exploit the empirical uncertainty sets,
we propose a greedy and optimistic clustering (GOC) algorithm that finds better
feature candidates over such sets, yielding more condensed clusters. As an
important application, we apply the GOC algorithm to synthetic datasets of the
orbital properties of stars generated through our numerical simulation
mimicking the formation process of the Milky Way. The GOC algorithm
demonstrates an improved performance in finding sibling stars originating from
the same dwarf galaxy. These realistic datasets have also been made publicly
available.
- Abstract(参考訳): 本研究では,データセットの各要素の共変が,その要素に特有の不確実性と関連しているクラスタリング問題について検討する。
より具体的には、共変量に非線形変換を適用する前処理を用いて隠れデータ構造をキャプチャするクラスタリングアプローチを検討する。
この目的のために、前処理した特徴に対する伝播不確実性を表す集合を経験的に近似する。
経験的不確実性集合を利用するために,これらの集合よりも優れた特徴候補を見つけ,より凝縮したクラスタを生成する,欲求的で楽観的なクラスタリング(GOC)アルゴリズムを提案する。
重要な用途として,銀河系の形成過程を模倣した数値シミュレーションにより生成された恒星の軌道特性の合成データセットにgocアルゴリズムを適用する。
GOCアルゴリズムは、同じ小銀河に由来する兄弟星の発見において、改良された性能を示す。
これらの現実的なデータセットも公開されている。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Deep Embedding Clustering Driven by Sample Stability [16.53706617383543]
サンプル安定性(DECS)により駆動されるディープ埋め込みクラスタリングアルゴリズムを提案する。
具体的には、まずオートエンコーダで初期特徴空間を構築し、次にサンプル安定性に制約されたクラスタ指向の埋め込み機能を学ぶ。
5つのデータセットに対する実験結果から,提案手法は最先端のクラスタリング手法と比較して優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-01-29T09:19:49Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Fast conformational clustering of extensive molecular dynamics
simulation data [19.444636864515726]
本稿では,長い軌道の高速なコンフォーメーションクラスタリングを実現するために,教師なしのデータ処理ワークフローを提案する。
我々は密度に基づく空間クラスタリングアルゴリズム(HDBSCAN)と2つの次元削減アルゴリズム(cc_analysisとEncodermap)を組み合わせる。
4つのテストシステムの助けを借りて、このクラスタリングワークフローの機能とパフォーマンスを説明します。
論文 参考訳(メタデータ) (2023-01-11T14:36:43Z) - Bregman Power k-Means for Clustering Exponential Family Data [11.434503492579477]
我々は、ブレグマン発散の下でのハードクラスタリングに関する古典的な研究のアルゴリズム的進歩を橋渡しする。
ブレグマン発散のエレガントな性質は、単純で透明なアルゴリズムで閉形式更新を維持できる。
シミュレーション実験の徹底的な実証分析と降雨データに関するケーススタディを考察し,提案手法はガウス以外の様々なデータ設定において,既存のピア手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-06-22T06:09:54Z) - Perfect Spectral Clustering with Discrete Covariates [68.8204255655161]
本稿では,大規模なスパースネットワークのクラスにおいて,高い確率で完全クラスタリングを実現するスペクトルアルゴリズムを提案する。
本手法は,スペクトルクラスタリングによる一貫した潜在構造回復を保証する最初の方法である。
論文 参考訳(メタデータ) (2022-05-17T01:41:06Z) - Gradient Based Clustering [72.15857783681658]
本稿では,クラスタリングの品質を計測するコスト関数の勾配を用いて,距離に基づくクラスタリングの一般的な手法を提案する。
アプローチは反復的な2段階の手順(クラスタ割り当てとクラスタセンターのアップデートの代替)であり、幅広い機能に適用できる。
論文 参考訳(メタデータ) (2022-02-01T19:31:15Z) - A Multi-disciplinary Ensemble Algorithm for Clustering Heterogeneous
Datasets [0.76146285961466]
本稿では,社会階級ランキングとメタヒューリスティックアルゴリズムに基づく進化的クラスタリングアルゴリズム(ECAStar)を提案する。
ECAStarは、再共生進化演算子、レヴィ飛行最適化、いくつかの統計技術と統合されている。
従来の5つのアプローチに対してECAStarを評価する実験を行った。
論文 参考訳(メタデータ) (2021-01-01T07:20:50Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Simple and Scalable Sparse k-means Clustering via Feature Ranking [14.839931533868176]
直感的で実装が簡単で,最先端のアルゴリズムと競合する,スパースk平均クラスタリングのための新しいフレームワークを提案する。
本手法は,属性のサブセットのクラスタリングや部分的に観測されたデータ設定など,タスク固有のアルゴリズムに容易に一般化できる。
論文 参考訳(メタデータ) (2020-02-20T02:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。