論文の概要: SuperpixelGridCut, SuperpixelGridMean and SuperpixelGridMix Data
Augmentation
- arxiv url: http://arxiv.org/abs/2204.08458v1
- Date: Mon, 11 Apr 2022 17:51:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-24 15:29:05.014770
- Title: SuperpixelGridCut, SuperpixelGridMean and SuperpixelGridMix Data
Augmentation
- Title(参考訳): SuperpixelGridCut, SuperpixelGridMean and SuperpixelGridMix Data Augmentation
- Authors: Karim Hammoudi and Adnane Cabani and Bouthaina Slika and Halim
Benhabiles and Fadi Dornaika and Mahmoud Melkemi
- Abstract要約: SuperpixelGridCut、SuperpixelGridMean、SuperpixelGridMixという3つの変種が提示される。
これらのグリッドベースの手法は、情報のドロップ・アンド・フューズを用いた画像変換の新たなスタイルを生成する。
- 参考スコア(独自算出の注目度): 10.66749251621689
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A novel approach of data augmentation based on irregular superpixel
decomposition is proposed. This approach called SuperpixelGridMasks permits to
extend original image datasets that are required by training stages of machine
learning-related analysis architectures towards increasing their performances.
Three variants named SuperpixelGridCut, SuperpixelGridMean and
SuperpixelGridMix are presented. These grid-based methods produce a new style
of image transformations using the dropping and fusing of information.
Extensive experiments using various image classification models and datasets
show that baseline performances can be significantly outperformed using our
methods. The comparative study also shows that our methods can overpass the
performances of other data augmentations. Experimental results obtained over
image recognition datasets of varied natures show the efficiency of these new
methods. SuperpixelGridCut, SuperpixelGridMean and SuperpixelGridMix codes are
publicly available at https://github.com/hammoudiproject/SuperpixelGridMasks
- Abstract(参考訳): 不規則なスーパーピクセル分解に基づく新しいデータ拡張手法を提案する。
superpixelgridmasksと呼ばれるこのアプローチは、機械学習に関連した分析アーキテクチャのトレーニング段階に必要なオリジナルイメージデータセットを、パフォーマンス向上のために拡張することができる。
SuperpixelGridCut、SuperpixelGridMean、SuperpixelGridMixの3種類が紹介される。
これらのグリッドベースの手法は,情報ドロップと融合を利用して画像変換を行う。
様々な画像分類モデルとデータセットを用いた大規模な実験により,本手法によりベースライン性能が著しく向上することを示した。
比較研究は、我々の手法が他のデータ拡張のパフォーマンスを超越できることも示している。
画像認識データセット上で得られた実験結果は,これら新しい手法の有効性を示す。
SuperpixelGridCut, SuperpixelGridMean, SuperpixelGridMixのコードはhttps://github.com/hammoudiproject/SuperpixelGridMasksで公開されている。
関連論文リスト
- Large-Scale Data-Free Knowledge Distillation for ImageNet via Multi-Resolution Data Generation [53.95204595640208]
Data-Free Knowledge Distillation (DFKD)は、教師モデルから生徒モデルへの知識伝達を可能にする高度な技術である。
従来のアプローチでは、実際の画像の情報を活用することなく、高解像度で合成画像を生成してきた。
MUSEは、クラスアクティベーションマップ(CAM)を使用して、低い解像度で画像を生成し、生成された画像が重要なクラス固有の特徴を保持することを保証する。
論文 参考訳(メタデータ) (2024-11-26T02:23:31Z) - Deep Spherical Superpixels [1.104960878651584]
DSS(Deep Spherical Superpixels)と呼ばれる全方位画像に適した,ディープラーニングに基づく最初のスーパーピクセルセグメンテーション手法を提案する。
提案手法は球面CNNアーキテクチャとスーパーピクセルのK平均クラスタリングパラダイムを利用して,球面形状に従うスーパーピクセルを生成する。
論文 参考訳(メタデータ) (2024-07-24T15:27:21Z) - Superpixel Transformers for Efficient Semantic Segmentation [32.537400525407186]
本稿では,画像の過剰部分化というスーパーピクセルの考え方を活用し,近代的なトランスフォーマーフレームワークでそれらを適用することによって,その解決策を提案する。
提案手法は,グローバルな自己認識機構によって生成されるリッチなスーパーピクセル特徴により,セマンティックセマンティックセグメンテーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-09-28T23:09:30Z) - T-former: An Efficient Transformer for Image Inpainting [50.43302925662507]
トランスフォーマーと呼ばれる注目に基づくネットワークアーキテクチャのクラスは、自然言語処理の分野で大きなパフォーマンスを示している。
本稿では,Taylorの展開に応じて,解像度に線形に関連付けられた新たな注意を設計し,この注意に基づいて,画像インペイントのためのネットワークである$T$-formerを設計する。
いくつかのベンチマークデータセットの実験により,提案手法は比較的少ないパラメータ数と計算複雑性を維持しつつ,最先端の精度を達成できることが示されている。
論文 参考訳(メタデータ) (2023-05-12T04:10:42Z) - Efficient Multiscale Object-based Superpixel Framework [62.48475585798724]
我々は,SICLE(Iterative CLEarcutting)によるスーパーピクセルという,新しいスーパーピクセルフレームワークを提案する。
SICLEは、複数スケールのセグメンテーションをオンザフライで生成できるオブジェクト情報を利用する。
これは最近のスーパーピクセル法を一般化し、複数のデライン化指標に従って効率と効率性に関する最先端のアプローチを超越している。
論文 参考訳(メタデータ) (2022-04-07T15:59:38Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) は画像解析にいくつかの応用がある。
深層学習に基づくSOD法は最も効果的であるが、類似した色を持つ前景の部品を見逃すことがある。
スーパーピクセル類似性(SESS)に対するtextitSaliency Enhancement というポストプロセッシング手法を導入する。
我々は,SESSが5つの画像データセット上での3つのディープラーニングに基づくSOD手法の結果を連続的に,かつ著しく改善できることを実証した。
論文 参考訳(メタデータ) (2021-12-01T17:22:54Z) - Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks [11.696069523681178]
スーパーピクセル方式をCNNに暗黙的に統合する方法を提案する。
提案手法では,下地層に画素を階層的にグループ化し,スーパーピクセルを生成する。
本手法は,セマンティックセグメンテーション,スーパーピクセルセグメンテーション,モノクル深度推定などのタスクで評価する。
論文 参考訳(メタデータ) (2021-03-05T02:20:26Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
今回提案する新しいtextbfAssociation textbfImplantation(AI)モジュールは、ネットワークがピクセルとその周辺グリッド間の関係を明示的にキャプチャすることを可能にする。
本手法は最先端性能を実現するだけでなく,十分な推論効率を維持することができた。
論文 参考訳(メタデータ) (2021-01-26T10:40:13Z) - Beyond Fixed Grid: Learning Geometric Image Representation with a
Deformable Grid [70.83353059694531]
本稿では,学習可能なニューラルネットワークモジュールであるemphDeformable Grid DefGridを紹介する。
DefGridは、2次元三角格子の頂点の位置オフセットを予測する。
セマンティックセグメンテーションのための一様グリッド上でCNNを使用する場合と比較して,同じグリッド解像度で有意に改善された結果を示す。
論文 参考訳(メタデータ) (2020-08-21T02:22:06Z) - Superpixel Segmentation with Fully Convolutional Networks [32.878045921919714]
本稿では,通常の画像グリッド上でのスーパーピクセルの予測に完全畳み込みネットワークを用いる新しい手法を提案する。
ベンチマーク・データセットによる実験結果から,提案手法は最先端のスーパーピクセル・セグメンテーション性能を実現することが示された。
ステレオマッチングのための人気のあるネットワークアーキテクチャを改良し、スーパーピクセルと格差を同時に予測する。
論文 参考訳(メタデータ) (2020-03-29T02:42:07Z) - Superpixel Segmentation via Convolutional Neural Networks with
Regularized Information Maximization [11.696069523681178]
ランダムd畳み込みニューラルネットワーク(CNN)を推論時間で最適化し,教師なしのスーパーピクセルセグメンテーション手法を提案する。
提案手法は,スーパーピクセルセグメンテーションの目的関数を最小化することにより,ラベルのない単一画像からCNNを介してスーパーピクセルを生成する。
論文 参考訳(メタデータ) (2020-02-17T04:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。