論文の概要: Tensor Quantum Programming
- arxiv url: http://arxiv.org/abs/2403.13486v1
- Date: Wed, 20 Mar 2024 10:44:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 17:18:34.475741
- Title: Tensor Quantum Programming
- Title(参考訳): テンソル量子プログラミング
- Authors: A. Termanova, Ar. Melnikov, E. Mamenchikov, N. Belokonev, S. Dolgov, A. Berezutskii, R. Ellerbrock, C. Mansell, M. Perelshtein,
- Abstract要約: 本研究では,行列積演算子を量子回路に符号化するアルゴリズムを開発した。
これは、微分方程式、最適化問題、量子化学において頻繁に遭遇する数に対して、最大50量子ビットでの有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Running quantum algorithms often involves implementing complex quantum circuits with such a large number of multi-qubit gates that the challenge of tackling practical applications appears daunting. To date, no experiments have successfully demonstrated a quantum advantage due to the ease with which the results can be adequately replicated on classical computers through the use of tensor network algorithms. Additionally, it remains unclear even in theory where exactly these advantages are rooted within quantum systems because the logarithmic complexity commonly associated with quantum algorithms is also present in algorithms based on tensor networks. In this article, we propose a novel approach called Tensor Quantum Programming, which leverages tensor networks for hybrid quantum computing. Our key insight is that the primary challenge of algorithms based on tensor networks lies in their high ranks (bond dimensions). Quantum computing offers a potential solution to this challenge, as an ideal quantum computer can represent tensors with arbitrarily high ranks in contrast to classical counterparts, which indicates the way towards quantum advantage. While tensor-based vector-encoding and state-readout are known procedures, the matrix-encoding required for performing matrix-vector multiplications directly on quantum devices remained unsolved. Here, we developed an algorithm that encodes Matrix Product Operators into quantum circuits with a depth that depends linearly on the number of qubits. It demonstrates effectiveness on up to 50 qubits for several matrices frequently encountered in differential equations, optimization problems, and quantum chemistry. We view this work as an initial stride towards the creation of genuinely practical quantum algorithms.
- Abstract(参考訳): 量子アルゴリズムを実行するには、多くのマルチキュービットゲートを持つ複雑な量子回路を実装する必要がある。
これまで、テンソルネットワークアルゴリズムを用いることで、従来のコンピュータで結果が適切に複製できるという容易さのため、量子上の優位性を示す実験は行われていない。
さらに、量子アルゴリズムに共通する対数複雑性がテンソルネットワークに基づくアルゴリズムにも存在しているため、これらの利点が量子システム内で正確に根付いているかは理論上も不明である。
本稿では,ハイブリッド量子コンピューティングにテンソルネットワークを利用するテンソル量子計画法を提案する。
私たちの重要な洞察は、テンソルネットワークに基づくアルゴリズムの主な課題は、その高いランク(ボンド次元)にあるということです。
量子コンピューティングは、量子優位性への道を示す古典的なものとは対照的に、任意に高いランクのテンソルを表現できる理想的な量子コンピュータとして、この課題に対する潜在的な解決策を提供する。
テンソルベースのベクトルエンコーディングと状態リードアウトは既知の手順であるが、行列ベクトル乗算を量子デバイス上で直接実行するのに必要な行列エンコーディングは未解決のままである。
そこで我々は,行列積演算子を量子回路に符号化するアルゴリズムを開発した。
これは、微分方程式、最適化問題、量子化学で頻繁に発生するいくつかの行列に対して最大50量子ビットでの有効性を示す。
我々はこの研究を、真に実用的な量子アルゴリズムの創出に向けた最初の一歩と見なしている。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum Computing and Tensor Networks for Laminate Design: A Novel Approach to Stacking Sequence Retrieval [1.6421520075844793]
主な例として、積層複合材料の重量最適化がある。
量子計算の急速に発展する分野は、これらの複雑な問題に対処するための新しいアプローチを提供するかもしれない。
論文 参考訳(メタデータ) (2024-02-09T15:01:56Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
我々は、量子アルゴリズムの効率的な実現に、マルチレベル量子システム(quditsとしても知られる)をどのように利用できるかを示すいくつかのアイデアをレビューする。
我々は,マルチキュービットゲートの分解を簡略化するためのキューディットの活用技術と,単一キューディットで複数のキュービットを符号化することで量子情報を圧縮する技術に焦点をあてる。
これらの理論スキームは、閉じ込められたイオン、中性原子、超伝導接合、量子光など、様々な性質の量子コンピューティングプラットフォームで実装することができる。
論文 参考訳(メタデータ) (2023-11-20T18:34:19Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
我々の量子シンセサイザーの目的は、ユーザーが高レベルなコマンドを使って量子アルゴリズムを実装できるようにすることである。
量子アルゴリズムを実装するための提案手法は、機械学習の分野で潜在的に有効である。
論文 参考訳(メタデータ) (2022-09-20T06:25:47Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
量子アルゴリズムの有望な領域は量子機械学習と量子最適化である。
近年の量子技術、特に量子ソフトウェアの発展により、研究と産業のコミュニティは量子アルゴリズムの新しい応用を見つけようとしている。
論文 参考訳(メタデータ) (2021-12-22T06:19:36Z) - Quantum Algorithms for Unsupervised Machine Learning and Neural Networks [2.28438857884398]
行列積や距離推定といったタスクを解くために量子アルゴリズムを導入する。
これらの結果は、教師なし機械学習のための新しい量子アルゴリズムの開発に使用される。
また、ニューラルネットワークやディープラーニングのための新しい量子アルゴリズムも提示します。
論文 参考訳(メタデータ) (2021-11-05T16:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。