論文の概要: Sampling Strategies for Static Powergrid Models
- arxiv url: http://arxiv.org/abs/2204.09053v1
- Date: Tue, 19 Apr 2022 11:38:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-21 13:27:09.898874
- Title: Sampling Strategies for Static Powergrid Models
- Title(参考訳): 静的パワーグリッドモデルのサンプリング戦略
- Authors: Stephan Balduin, Eric MSP Veith, Sebastian Lehnhoff
- Abstract要約: 電力フロー計算は、電力グリッドのバスの電圧の大きさを電力値から計算する反復的な方法である。
機械学習、特に人工知能ニューラルネットワークは、電力フロー計算のサロゲートとしてうまく利用された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning and computational intelligence technologies gain more and
more popularity as possible solution for issues related to the power grid. One
of these issues, the power flow calculation, is an iterative method to compute
the voltage magnitudes of the power grid's buses from power values. Machine
learning and, especially, artificial neural networks were successfully used as
surrogates for the power flow calculation. Artificial neural networks highly
rely on the quality and size of the training data, but this aspect of the
process is apparently often neglected in the works we found. However, since the
availability of high quality historical data for power grids is limited, we
propose the Correlation Sampling algorithm. We show that this approach is able
to cover a larger area of the sampling space compared to different random
sampling algorithms from the literature and a copula-based approach, while at
the same time inter-dependencies of the inputs are taken into account, which,
from the other algorithms, only the copula-based approach does.
- Abstract(参考訳): 機械学習とコンピュータインテリジェンス技術は、電力グリッドに関連する問題の解決策として、ますます人気が高まっている。
これらの問題の1つである電力フロー計算は、電力網のバスの電圧の大きさを電力値から計算する反復的な方法である。
機械学習、特に人工ニューラルネットワークは、電力フロー計算のサロゲートとしてうまく使われた。
ニューラルネットワークはトレーニングデータの品質とサイズに大きく依存していますが、このプロセスの側面は、私たちが発見した作業では無視されることが多いのです。
しかし,電力網における高品質な履歴データの入手は限られているため,相関サンプリングアルゴリズムを提案する。
また,本手法は,文献からの異なるランダムサンプリングアルゴリズムとコプラに基づくアプローチと比較して,サンプリング空間の広い領域をカバーすることができる一方で,他のアルゴリズムから,コプラに基づくアプローチのみを考慮した入力の相互依存性を考慮することができることを示す。
関連論文リスト
- Erasure Coded Neural Network Inference via Fisher Averaging [28.243239815823205]
消去符号化コンピューティングは、サーバのストラグリングや異種トラフィックの変動といった要因によって引き起こされるテールレイテンシを低減するために、クラウドシステムで成功している。
我々は、2つ以上のニューラルネットワークモデルに対して、与えられたニューラルネットワークの出力の線形結合である符号付きモデルを構築する方法を設計する。
実世界のビジョンデータセットに基づいてトレーニングされたニューラルネットワーク上で消去符号化を行う実験を行い、COINを用いた復号出力の精度は他のベースラインよりも著しく高いことを示す。
論文 参考訳(メタデータ) (2024-09-02T18:46:26Z) - Deep multitask neural networks for solving some stochastic optimal
control problems [0.0]
本稿では,最適制御問題のクラスについて考察し,ニューラルネットワークを用いた効果的な解法を提案する。
マルチタスクニューラルネットワークをトレーニングするために,タスク間の学習を動的にバランスさせる新しいスキームを導入する。
実世界のデリバティブ価格問題に関する数値実験を通じて,本手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-01-23T17:20:48Z) - On Statistical Learning of Branch and Bound for Vehicle Routing
Optimization [3.6922704509753084]
我々は,計算コストの高いStrong Branching戦略の決定過程をエミュレートするためにニューラルネットワークを訓練する。
このアプローチは分岐とバウンドのアルゴリズムの性能にマッチするか、改善することができる。
論文 参考訳(メタデータ) (2023-10-15T23:59:57Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
グラフニューラルネットワークを用いて、要求された電力と対応するアロケーションとの間の非線形パラメトリゼーションを学習する。
シミュレーションを通して、この教師なし学習コンテキストにおけるGNNの使用は、標準解法に匹敵するソリューションにつながることを示す。
論文 参考訳(メタデータ) (2022-10-17T17:30:09Z) - Solving AC Power Flow with Graph Neural Networks under Realistic
Constraints [3.114162328765758]
本稿では,現実的な制約下での交流電力流問題の解法として,グラフニューラルネットワークアーキテクチャを提案する。
本稿では,グラフニューラルネットワークを用いて電力フローの物理的制約を学習するフレームワークの開発を実演する。
論文 参考訳(メタデータ) (2022-04-14T14:49:34Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
分散データを収集し、エッジで機械学習を実行するエッジインテリジェンスが提案されている。
本稿では,経験的分類誤差モデルに基づいて無線リソースを割り当てるLCPA法を提案する。
実験の結果,提案したLCPAアルゴリズムは,他のパワーアロケーションアルゴリズムよりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-21T07:02:07Z) - Quantized Decentralized Stochastic Learning over Directed Graphs [52.94011236627326]
有向グラフ上で通信する計算ノード間でデータポイントが分散される分散学習問題を考える。
モデルのサイズが大きくなるにつれて、分散学習は、各ノードが隣人にメッセージ(モデル更新)を送信することによる通信負荷の大きなボトルネックに直面します。
本稿では,分散コンセンサス最適化におけるプッシュサムアルゴリズムに基づく有向グラフ上の量子化分散学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-23T18:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。