論文の概要: Parametric Level-sets Enhanced To Improve Reconstruction (PaLEnTIR)
- arxiv url: http://arxiv.org/abs/2204.09815v3
- Date: Tue, 13 Feb 2024 22:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 20:36:02.714098
- Title: Parametric Level-sets Enhanced To Improve Reconstruction (PaLEnTIR)
- Title(参考訳): 再現性向上のためのパラメトリックレベルセット(PalenTIR)
- Authors: Ege Ozsar, Misha Kilmer, Eric Miller, Eric de Sturler, Arvind Saibaba
- Abstract要約: 本稿では,PaLEnTIR(PalenTIR)について紹介する。
キーとなるコントリビューションは、単一のレベルセット関数を利用して、複数コントラストのピースワイズ・コンスタントなオブジェクトを含むシーンを復元する独自の PaLS の定式化である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce PaLEnTIR, a significantly enhanced parametric level-set (PaLS)
method addressing the restoration and reconstruction of piecewise constant
objects. Our key contribution involves a unique PaLS formulation utilizing a
single level-set function to restore scenes containing multi-contrast
piecewise-constant objects without requiring knowledge of the number of objects
or their contrasts. Unlike standard PaLS methods employing radial basis
functions (RBFs), our model integrates anisotropic basis functions (ABFs),
thereby expanding its capacity to represent a wider class of shapes.
Furthermore, PaLEnTIR improves the conditioning of the Jacobian matrix,
required as part of the parameter identification process, and consequently
accelerates optimization methods. We validate PaLEnTIR's efficacy through
diverse experiments encompassing sparse and limited angle of view X-ray
computed tomography (2D and 3D), nonlinear diffuse optical tomography (DOT),
denoising, and deconvolution tasks using both real and simulated data sets.
- Abstract(参考訳): palentirは、区分的な定数オブジェクトの復元と再構築に対応する、格段に強化されたパラメトリックレベルセット(pals)手法である。
我々の重要な貢献は、単一のレベルセット関数を利用して、オブジェクトの数やコントラストの知識を必要とせずに、複数コントラストの断片的なオブジェクトを含むシーンを復元することである。
放射状基底関数 (RBF) を用いた標準的な PaLS 法とは異なり,我々のモデルは異方性基底関数 (ABF) を統合し,より広い形状のクラスを表す能力を拡張する。
さらに、PaLEnTIRはパラメータ識別プロセスの一部として必要となるヤコビ行列の条件付けを改善し、最適化手法を高速化する。
本研究では,2次元および3次元のX線CT,非線形拡散光トモグラフィ(DOT),デノナイズ,デコンボリューションといった様々な実験を通じてPaLEnTIRの有効性を検証する。
関連論文リスト
- Enhancing Fluorescence Lifetime Parameter Estimation Accuracy with Differential Transformer Based Deep Learning Model Incorporating Pixelwise Instrument Response Function [0.3441582801949978]
本稿では,最新の微分変換器エンコーダ・デコーダアーキテクチャであるMFliNetを用いた新しいDLアーキテクチャを提案する。
本モデルの性能は, 慎重に設計し, 複雑な組織模倣ファントムと前臨床内癌異種移植実験により実証した。
論文 参考訳(メタデータ) (2024-11-25T20:03:41Z) - Ray-driven Spectral CT Reconstruction Based on Neural Base-Material Fields [10.684377265644045]
スペクトルCT再構成において、基本材料分解は積分方程式の大規模非線形系を解くことを伴う。
本稿では、ニューラルネットワーク表現を用いて物体の減衰係数をパラメータ化するモデルを提案する。
線駆動神経場に基づく線積分の軽量な離散化法を導入する。
論文 参考訳(メタデータ) (2024-04-10T13:10:52Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - Hybrid Functional Maps for Crease-Aware Non-Isometric Shape Matching [42.0728900164228]
ラプラス・ベルトラミ作用素(LBO)固有モデムの固有関数と弾性薄殻ヘシアンの固有関数の非直交外部基底を結合する新しいアプローチを提案する。
各種の教師なしおよび教師なしの設定に対して広範囲な評価を行い,大幅な改善を示した。
論文 参考訳(メタデータ) (2023-12-06T18:41:01Z) - RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction [3.1820300989695833]
本稿では,光度ステレオにより得られる多視点反射率と正規写像を統合するための多目的パラダイムを提案する。
提案手法では, 反射率と正規度の画素ワイドな共同パラメータ化を, 放射光のベクトルとして用いた。
これは、高い曲率または低い視認性を持つ領域の詳細な3D再構成を大幅に改善する。
論文 参考訳(メタデータ) (2023-12-02T19:49:27Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
本稿では,マルチビュー画像やビデオから可照性神経表面を復元するNeuS-PIR法を提案する。
NeRFや離散メッシュに基づく手法とは異なり,提案手法は暗黙のニューラルサーフェス表現を用いて高品質な幾何学を再構築する。
本手法は,現代のグラフィックスエンジンとシームレスに統合可能なリライトなどの高度なアプリケーションを実現する。
論文 参考訳(メタデータ) (2023-06-13T09:02:57Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
トポロジを改良して3次元畳み込みを補正し,上行階の高次化を図る。
また、要素間の独立性を最大化するために特徴マップに作用する新しい多様性対応正規化(DA-Reg)項を提案する。
提案したRe$3$-ConvSetとDA-Regの優位性を実証するために,様々なHS画像処理および解析タスクに適用する。
論文 参考訳(メタデータ) (2023-01-15T16:19:18Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
本稿では,FNMF(Feature weighted Non- negative Matrix Factorization)を提案する。
FNMFはその重要性に応じて特徴の重みを適応的に学習する。
提案する最適化アルゴリズムを用いて効率的に解くことができる。
論文 参考訳(メタデータ) (2021-03-24T21:17:17Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
スパースビューからの光場再構成のための新しい畳み込みニューラルネットワーク(CNN)ベースのフレームワークを開発した。
最先端のアルゴリズムと比較して,提案フレームワークの高性能と堅牢性を実証する。
論文 参考訳(メタデータ) (2021-03-24T08:16:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。