論文の概要: Enhancing Fluorescence Lifetime Parameter Estimation Accuracy with Differential Transformer Based Deep Learning Model Incorporating Pixelwise Instrument Response Function
- arxiv url: http://arxiv.org/abs/2411.16896v1
- Date: Mon, 25 Nov 2024 20:03:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:22.930874
- Title: Enhancing Fluorescence Lifetime Parameter Estimation Accuracy with Differential Transformer Based Deep Learning Model Incorporating Pixelwise Instrument Response Function
- Title(参考訳): 画素楽器応答関数を組み込んだ微分変換器を用いたディープラーニングモデルによる蛍光寿命パラメータ推定精度の向上
- Authors: Ismail Erbas, Vikas Pandey, Navid Ibtehaj Nizam, Nanxue Yuan, Amit Verma, Margarida Barosso, Xavier Intes,
- Abstract要約: 本稿では,最新の微分変換器エンコーダ・デコーダアーキテクチャであるMFliNetを用いた新しいDLアーキテクチャを提案する。
本モデルの性能は, 慎重に設計し, 複雑な組織模倣ファントムと前臨床内癌異種移植実験により実証した。
- 参考スコア(独自算出の注目度): 0.3441582801949978
- License:
- Abstract: Fluorescence lifetime imaging (FLI) is an important molecular imaging modality that can provide unique information for biomedical applications. FLI is based on acquiring and processing photon time of arrival histograms. The shape and temporal offset of these histograms depends on many factors, such as the instrument response function (IRF), optical properties, and the topographic profile of the sample. Several inverse solver analytical methods have been developed to compute the underlying fluorescence lifetime parameters, but most of them are computationally expensive and time-consuming. Thus, deep learning (DL) algorithms have progressively replaced computation methods in fluorescence lifetime parameter estimation. Often, DL models are trained with simple datasets either generated through simulation or a simple experiment where the fluorophore surface profile is mostly flat; therefore, DL models often do not perform well on samples with complex surface profiles such as ex-vivo organs or in-vivo whole intact animals. Herein, we introduce a new DL architecture using state-of-the-art Differential Transformer encoder-decoder architecture, MFliNet (Macroscopic FLI Network), that takes an additional input of IRF together with TPSF, addressing discrepancies in the photon time-of-arrival distribution. We demonstrate the model's performance through carefully designed, complex tissue-mimicking phantoms and preclinical in-vivo cancer xenograft experiments.
- Abstract(参考訳): 蛍光寿命イメージング(FLI)は、生体医学的応用にユニークな情報を提供する重要な分子イメージングモダリティである。
FLIは、到着したヒストグラムの光子時間を取得し、処理する。
これらのヒストグラムの形状と時間的オフセットは、機器応答関数(IRF)、光学特性、試料の地形プロファイルなど、多くの要因に依存する。
根底にある蛍光寿命パラメータを計算するためにいくつかの逆解法が開発されているが、そのほとんどは計算に高価で時間を要するものである。
このように、深層学習(DL)アルゴリズムは、蛍光寿命パラメータ推定における計算手法を徐々に置き換えている。
しばしば、DLモデルは、シミュレーションまたは蛍光体表面のプロファイルがほとんど平坦な単純な実験によって生成された単純なデータセットで訓練されるため、DLモデルは、前生代臓器や無傷動物のような複雑な表面のプロファイルを持つサンプルではうまく機能しないことが多い。
本稿では,最新技術である微分変換器エンコーダ・デコーダアーキテクチャであるMFliNet(Macroscopic FLI Network)を用いた新しいDLアーキテクチャを提案する。
本モデルの性能は, 慎重に設計し, 複雑な組織模倣ファントムと前臨床内癌異種移植実験により実証した。
関連論文リスト
- FE-UNet: Frequency Domain Enhanced U-Net with Segment Anything Capability for Versatile Image Segmentation [50.9040167152168]
CNNのコントラスト感度関数を実験的に定量化し,人間の視覚システムと比較した。
本稿ではウェーブレット誘導分光ポーリングモジュール(WSPM)を提案する。
人間の視覚系をさらにエミュレートするために、周波数領域拡張受容野ブロック(FE-RFB)を導入する。
本研究では,SAM2 をバックボーンとし,Hiera-Large を事前学習ブロックとして組み込んだ FE-UNet を開発した。
論文 参考訳(メタデータ) (2025-02-06T07:24:34Z) - Enhanced Confocal Laser Scanning Microscopy with Adaptive Physics Informed Deep Autoencoders [0.0]
共焦点レーザー走査顕微鏡の限界に対処する物理インフォームド・ディープラーニング・フレームワークを提案する。
このモデルは、畳み込み層と転置畳み込み層を用いて、ノイズの多い入力から高忠実度画像を再構成する。
論文 参考訳(メタデータ) (2025-01-24T18:32:34Z) - OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System [7.1083241462091165]
我々は,光学的文字認識(OCR)を基本とする外部モダリティ誘導データマイニングフレームワークを導入し,画像から統計的特徴を抽出する。
提案手法の重要な側面は、単一のモーダル認識モデルを用いて抽出された外部モーダル特徴のアライメントであり、畳み込みニューラルネットワークによって符号化された画像特徴である。
本手法は欠陥検出モデルのリコール率を大幅に向上させ,挑戦シナリオにおいても高い堅牢性を維持する。
論文 参考訳(メタデータ) (2024-03-18T07:41:39Z) - Optimization of array encoding for ultrasound imaging [2.357055571094446]
機械学習(ML)を用いて、時間遅延とアポッド化重みによってパラメータ化されたスキャンシーケンスを構築し、高品質なBモード画像を生成する。
これらの結果は,ワイヤターゲットと組織模倣ファントムの両方で実験的に実証された。
論文 参考訳(メタデータ) (2024-03-01T05:19:59Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
大気乱流による画像歪みは、長距離光学画像システムにおいて重要な問題である。
ディープラーニングモデルが現実世界の乱流条件に適応するために、高速で物理学的なシミュレーションツールが導入された。
本稿では,物理統合復元ネットワーク(PiRN)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:49:21Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Spatially-Variant CNN-based Point Spread Function Estimation for Blind
Deconvolution and Depth Estimation in Optical Microscopy [6.09170287691728]
薄めながら平らでない物体の光顕微鏡画像の解像度を向上する手法を提案する。
畳み込みニューラルネットワーク(CNN)を用いた空間変動点スプレッド関数(PSF)モデルのパラメータを推定する。
本手法は,理想条件下での2乗ピアソン相関係数0.99で画像自体からPSFパラメータを復元する。
論文 参考訳(メタデータ) (2020-10-08T14:20:16Z) - Learning to Model and Calibrate Optics via a Differentiable Wave Optics
Simulator [27.913052825303097]
実蛍光顕微鏡の微分可能計算モデルを構築するための学習に基づく新しい手法を提案する。
我々のモデルは、データサンプルから直接実際の光学装置を校正し、所望の入出力データを指定することで、ポイントスプレッド機能を構築するために使用できる。
論文 参考訳(メタデータ) (2020-05-18T10:23:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。