Differentially Private Learning with Margin Guarantees
- URL: http://arxiv.org/abs/2204.10376v1
- Date: Thu, 21 Apr 2022 19:12:06 GMT
- Title: Differentially Private Learning with Margin Guarantees
- Authors: Raef Bassily, Mehryar Mohri, Ananda Theertha Suresh
- Abstract summary: We present a series of new differentially private (DP) algorithms with dimension-independent margin guarantees.
For the family of linear hypotheses, we give a pure DP learning algorithm that benefits from relative deviation margin guarantees.
We also present a new efficient DP learning algorithm with margin guarantees for kernel-based hypotheses.
- Score: 48.83724068578305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a series of new differentially private (DP) algorithms with
dimension-independent margin guarantees. For the family of linear hypotheses,
we give a pure DP learning algorithm that benefits from relative deviation
margin guarantees, as well as an efficient DP learning algorithm with margin
guarantees. We also present a new efficient DP learning algorithm with margin
guarantees for kernel-based hypotheses with shift-invariant kernels, such as
Gaussian kernels, and point out how our results can be extended to other
kernels using oblivious sketching techniques. We further give a pure DP
learning algorithm for a family of feed-forward neural networks for which we
prove margin guarantees that are independent of the input dimension.
Additionally, we describe a general label DP learning algorithm, which benefits
from relative deviation margin bounds and is applicable to a broad family of
hypothesis sets, including that of neural networks. Finally, we show how our DP
learning algorithms can be augmented in a general way to include model
selection, to select the best confidence margin parameter.
Related papers
- Private Networked Federated Learning for Nonsmooth Objectives [7.278228169713637]
This paper develops a networked federated learning algorithm to solve nonsmooth objective functions.
We use the zero-concentrated differential privacy notion (zCDP) to guarantee the confidentiality of the participants.
We provide complete theoretical proof for the privacy guarantees and the algorithm's convergence to the exact solution.
arXiv Detail & Related papers (2023-06-24T16:13:28Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - On Private Online Convex Optimization: Optimal Algorithms in
$\ell_p$-Geometry and High Dimensional Contextual Bandits [9.798304879986604]
We study the Differentially private (DP) convex optimization problem with streaming data sampled from a distribution and arrives sequentially.
We also consider the continual release model where parameters related to private information are updated and released upon each new data, often known as the online algorithms.
Our algorithm achieves in linear time the optimal excess risk when $1pleq 2$ and the state-of-the-art excess risk meeting the non-private lower ones when $2pleqinfty$.
arXiv Detail & Related papers (2022-06-16T12:09:47Z) - Differentially Private Federated Learning via Inexact ADMM with Multiple
Local Updates [0.0]
We develop a DP inexact alternating direction method of multipliers algorithm with multiple local updates for federated learning.
We show that our algorithm provides $barepsilon$-DP for every iteration, where $barepsilon$ is a privacy budget controlled by the user.
We demonstrate that our algorithm reduces the testing error by at most $31%$ compared with the existing DP algorithm, while achieving the same level of data privacy.
arXiv Detail & Related papers (2022-02-18T19:58:47Z) - Differentially Private Federated Bayesian Optimization with Distributed
Exploration [48.9049546219643]
We introduce differential privacy (DP) into the training of deep neural networks through a general framework for adding DP to iterative algorithms.
We show that DP-FTS-DE achieves high utility (competitive performance) with a strong privacy guarantee.
We also use real-world experiments to show that DP-FTS-DE induces a trade-off between privacy and utility.
arXiv Detail & Related papers (2021-10-27T04:11:06Z) - Uniform-PAC Bounds for Reinforcement Learning with Linear Function
Approximation [92.3161051419884]
We study reinforcement learning with linear function approximation.
Existing algorithms only have high-probability regret and/or Probably Approximately Correct (PAC) sample complexity guarantees.
We propose a new algorithm called FLUTE, which enjoys uniform-PAC convergence to the optimal policy with high probability.
arXiv Detail & Related papers (2021-06-22T08:48:56Z) - Differentially Private Federated Learning via Inexact ADMM [0.0]
Differential privacy (DP) techniques can be applied to the federated learning model to protect data privacy against inference attacks.
We develop a DP inexact alternating direction method of multipliers algorithm that solves a sequence of trust-region subproblems.
Our algorithm reduces the testing error by at most $22%$ compared with the existing DP algorithm, while achieving the same level of data privacy.
arXiv Detail & Related papers (2021-06-11T02:28:07Z) - No-Regret Algorithms for Private Gaussian Process Bandit Optimization [13.660643701487002]
We consider the ubiquitous problem of gaussian process (GP) bandit optimization from the lens of privacy-preserving statistics.
We propose a solution for differentially private GP bandit optimization that combines a uniform kernel approximator with random perturbations.
Our algorithms maintain differential privacy throughout the optimization procedure and critically do not rely explicitly on the sample path for prediction.
arXiv Detail & Related papers (2021-02-24T18:52:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.