論文の概要: A general framework for the composition of quantum homomorphic
encryption \& quantum error correction
- arxiv url: http://arxiv.org/abs/2204.10471v1
- Date: Fri, 22 Apr 2022 02:47:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 01:14:07.029540
- Title: A general framework for the composition of quantum homomorphic
encryption \& quantum error correction
- Title(参考訳): 量子準同型暗号の合成と量子誤差補正の一般的な枠組み
- Authors: Yingkai Ouyang and Peter P. Rohde
- Abstract要約: 普遍的でクラウドベースの量子計算には、情報理論のセキュリティと量子エラー補正を備えた量子同型暗号が必須である。
我々は,量子計算における離散変数モデルと連続変数モデルの両方に適用する。
- 参考スコア(独自算出の注目度): 6.85316573653194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two essential primitives for universal, cloud-based quantum computation with
security based on the laws of quantum mechanics, are quantum homomorphic
encryption with information-theoretic security and quantum error correction.
The former enables information-theoretic security of outsourced quantum
computation, while the latter allows reliable and scalable quantum computations
in the presence of errors. Previously these ingredients have been considered in
isolation from one another. By establishing group-theoretic requirements that
these two ingredients must satisfy, we provide a general framework for
composing them. Namely, a quantum homomorphic encryption scheme enhanced with
quantum error correction can directly inherit its properties from its
constituent quantum homomorphic encryption and quantum error correction
schemes. We apply our framework to both discrete- and continuous-variable
models for quantum computation, such as Pauli-key and permutation-key
encryptions in the qubit model, and displacement-key encryptions in a
continuous-variable model based on Gottesman-Kitaev-Preskill codes.
- Abstract(参考訳): 量子力学の法則に基づくセキュリティを備えた、クラウドベースの汎用量子計算のための2つの本質的なプリミティブは、情報理論的なセキュリティと量子誤り訂正を伴う量子準同型暗号である。
前者はアウトソース量子計算の情報理論的なセキュリティを可能にし、後者はエラー発生時に信頼性が高くスケーラブルな量子計算を可能にする。
以前はこれらの材料は別々に考えられていた。
これら2つの要素が満たさなければならない群理論的要件を確立することにより、構成のための一般的な枠組みを提供する。
すなわち、量子誤差補正によって拡張された量子準同型暗号スキームは、その特性を量子準同型暗号および量子誤差補正スキームから直接継承することができる。
我々は,量子計算における離散および連続変数モデル,例えば,量子ビットモデルにおけるパウリキーや置換キー暗号,およびゴッテマン・キタエフ・プレスキル符号に基づく連続変数モデルにおける変位キー暗号に適用する。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Deploying hybrid quantum-secured infrastructure for applications: When
quantum and post-quantum can work together [0.8702432681310401]
量子鍵分布は、予期せぬ技術発展に対して安全である。
量子後暗号は古典的および量子コンピューティング技術の攻撃に対してさえも安全であると考えられている。
また、フルスタックの量子セキュリティインフラのさらなる発展における様々な方向性を示す。
論文 参考訳(メタデータ) (2023-04-10T13:44:21Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Unclonability and Quantum Cryptanalysis: From Foundations to
Applications [0.0]
不規則性(Unclonability)は、量子理論の基本概念であり、量子情報の主要な非古典的性質の1つである。
我々は、量子世界、すなわち量子物理学的不閉性(quantum physical unclonability)という新しい非閉性の概念を導入する。
本稿では、暗号資源として、この新しいタイプの無拘束性(unclonability)のいくつかの応用について論じ、確実に安全な量子プロトコルを設計する。
論文 参考訳(メタデータ) (2022-10-31T17:57:09Z) - A prototype of quantum von Neumann architecture [0.0]
我々は、フォン・ノイマンアーキテクチャの量子バージョンである普遍量子コンピュータシステムのモデルを提案する。
量子メモリユニットの要素としてebitを使用し、量子制御ユニットと処理ユニットの要素としてqubitを使用する。
本研究は,量子情報の多様体パワーを実証し,量子コンピュータシステム構築の道を開くものである。
論文 参考訳(メタデータ) (2021-12-17T06:33:31Z) - Quantum Computation Using Action Variables [4.087043981909747]
我々は,動作変数をフォールトトレラントな量子計算として用いた量子計算について論じる。
さらに、バーホフ標準形式を拡張調和振動子量子計算の数学的枠組みとみなす。
論文 参考訳(メタデータ) (2021-09-24T12:04:27Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
長距離エンタングゲートを用いた普遍量子計算のためのプラットフォームとして、2種の超低温原子種を混合して提案する。
1つの原子種は、情報の基本単位を形成する可変長の局所化された集合スピンを実現する。
本稿では,ゴッテマン・キタエフ・プレスキル符号の有限次元バージョンについて論じ,集合スピンに符号化された量子情報を保護する。
論文 参考訳(メタデータ) (2020-10-29T20:17:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。