論文の概要: ParkPredict+: Multimodal Intent and Motion Prediction for Vehicles in
Parking Lots with CNN and Transformer
- arxiv url: http://arxiv.org/abs/2204.10777v1
- Date: Sun, 17 Apr 2022 01:54:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-01 09:27:20.366144
- Title: ParkPredict+: Multimodal Intent and Motion Prediction for Vehicles in
Parking Lots with CNN and Transformer
- Title(参考訳): ParkPredict+:CNNとトランスフォーマーを用いた駐車場における車両のマルチモーダルインテントと動作予測
- Authors: Xu Shen, Matthew Lacayo, Nidhir Guggilla, Francesco Borrelli
- Abstract要約: 本稿では,駐車場における人間駆動車両の多目的意図と軌道予測について述べる。
CNNとTransformerネットワークで設計したモデルを用いて,時間空間的・文脈的な情報を軌跡履歴や鳥の視線意味画像から抽出する。
提案手法は,任意のモードを許容しながら,既存のモデルよりも精度が高い。
さらに,駐車場において,高解像度でリッチな交通シナリオを備えた最初の一般人運転データセットを提示する。
- 参考スコア(独自算出の注目度): 11.287187018907284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of multimodal intent and trajectory prediction for human-driven
vehicles in parking lots is addressed in this paper. Using models designed with
CNN and Transformer networks, we extract temporal-spatial and contextual
information from trajectory history and local bird's eye view (BEV) semantic
images, and generate predictions about intent distribution and future
trajectory sequences. Our methods outperforms existing models in accuracy,
while allowing an arbitrary number of modes, encoding complex multi-agent
scenarios, and adapting to different parking maps. In addition, we present the
first public human driving dataset in parking lot with high resolution and rich
traffic scenarios for relevant research in this field.
- Abstract(参考訳): 本稿では,駐車場における車両の多目的意図と軌道予測の問題に対処する。
CNNとTransformerネットワークで設計したモデルを用いて、軌跡履歴と局所鳥眼ビュー(BEV)意味画像から時間空間情報と文脈情報を抽出し、意図分布と将来の軌跡シーケンスに関する予測を生成する。
提案手法は,任意の数のモードを許容し,複雑なマルチエージェントシナリオをエンコードし,異なるパーキングマップに適応しながら,既存のモデルの精度を上回っている。
また,この分野では,高分解能・高トラフィックシナリオを持つ駐車場において,初の公共運転データセットを提示する。
関連論文リスト
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
マルチトランスモーション(Multi-Transmotion)は、モダリティ事前トレーニング用に設計された革新的なトランスフォーマーベースのモデルである。
提案手法は,下流タスクにおける各種データセット間の競合性能を示す。
論文 参考訳(メタデータ) (2024-11-04T23:15:21Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
近年,Bird's-Eye View (BEV) の知覚が注目されている。
自動運転のためのデータ駆動シミュレーションは、最近の研究の焦点となっている。
本稿では,現実的かつ空間的に一貫した周辺画像を合成する条件生成モデルであるBEVGenを提案する。
論文 参考訳(メタデータ) (2023-01-11T18:39:34Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
歩行者の立ち止まりと予測の新たな課題を紹介します。
都市交通における歩行者の立ち寄り行動を明示的に研究するためのベンチマークであるTransをリリースする。
歩行者の歩行動作に注釈を付けたいくつかの既存のデータセットから構築し、さまざまなシナリオや行動を実現する。
論文 参考訳(メタデータ) (2022-03-04T18:39:31Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Multi-Modal Hybrid Architecture for Pedestrian Action Prediction [14.032334569498968]
本研究では,歩行者の横断行動を予測するために,環境から取得したさまざまな情報ソースを組み込んだ新しいマルチモーダル予測アルゴリズムを提案する。
既存の2次元歩行者行動ベンチマークと新たに注釈付けされた3次元運転データセットを用いて,提案モデルが歩行者横断予測における最先端性能を達成することを示す。
論文 参考訳(メタデータ) (2020-11-16T15:17:58Z) - Vehicle Trajectory Prediction in Crowded Highway Scenarios Using Bird
Eye View Representations and CNNs [0.0]
本稿では,図形表現を用いた車両軌道予測の新しい手法について述べる。
この問題は、交通参加者間の基盤となる関係を学習するためにネットワークを訓練する画像回帰問題である。
このモデルは2つの反対の交通流で同時に30台以上の車両で高速道路のシナリオでテストされている。
論文 参考訳(メタデータ) (2020-08-26T11:15:49Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction
using a Graph Vehicle-Pedestrian Attention Network [12.070251470948772]
本稿では,確率的集団GANが確率的マルチモーダル予測をどうやって生成できるかを示す。
ソーシャルインタラクションをモデル化するグラフ車両歩行者注意ネットワーク(GVAT)も提案する。
本研究では,軌道予測手法の既存の状況の改善を実証し,集団間相互作用の真のマルチモーダル性と不確実性を直接モデル化する方法について述べる。
論文 参考訳(メタデータ) (2020-06-23T11:25:16Z) - AMENet: Attentive Maps Encoder Network for Trajectory Prediction [35.22312783822563]
軌道予測は、安全な将来の動きを計画するための応用に不可欠である。
我々は Attentive Maps Network (AMENet) というエンドツーエンド生成モデルを提案する。
AMENetはエージェントの動作と相互作用情報をエンコードし、高精度でリアルなマルチパス軌道予測を行う。
論文 参考訳(メタデータ) (2020-06-15T10:00:07Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
我々は、駐車場環境を開発し、人間の駐車操作のデータセットを収集する。
本稿では,多モード長短期記憶(LSTM)予測モデルと畳み込みニューラルネットワークLSTM(CNN-LSTM)を物理ベースの拡張カルマンフィルタ(EKF)ベースラインと比較する。
以上の結果から,1) 意図をよく推定できる(LSTMとCNN-LSTMモデルによる約85% のトップ1精度と100% トップ3精度),2) 運転者の意図する駐車場所の知識が駐車軌跡の予測に大きく影響すること,3) 環境の意味的表現について考察した。
論文 参考訳(メタデータ) (2020-04-21T20:46:32Z) - MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic [35.22312783822563]
都市混合交通圏における軌道予測は多くのインテリジェント交通システムにとって重要である。
本稿では,過去と未来の両方のシーンコンテキストを符号化して学習するマルチコンテキストネットワーク(MCENET)を提案する。
推定時間において,対象エージェントの過去の状況と動作情報と潜伏変数のサンプリングを組み合わせ,複数の現実的軌跡を予測する。
論文 参考訳(メタデータ) (2020-02-14T11:04:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。