Learning Eco-Driving Strategies at Signalized Intersections
- URL: http://arxiv.org/abs/2204.12561v1
- Date: Tue, 26 Apr 2022 19:45:11 GMT
- Title: Learning Eco-Driving Strategies at Signalized Intersections
- Authors: Vindula Jayawardana and Cathy Wu
- Abstract summary: We propose a reinforcement learning approach to learn effective eco-driving control strategies.
We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time.
Results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.
- Score: 1.7682859739940435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Signalized intersections in arterial roads result in persistent vehicle
idling and excess accelerations, contributing to fuel consumption and CO2
emissions. There has thus been a line of work studying eco-driving control
strategies to reduce fuel consumption and emission levels at intersections.
However, methods to devise effective control strategies across a variety of
traffic settings remain elusive. In this paper, we propose a reinforcement
learning (RL) approach to learn effective eco-driving control strategies. We
analyze the potential impact of a learned strategy on fuel consumption, CO2
emission, and travel time and compare with naturalistic driving and model-based
baselines. We further demonstrate the generalizability of the learned policies
under mixed traffic scenarios. Simulation results indicate that scenarios with
100% penetration of connected autonomous vehicles (CAV) may yield as high as
18% reduction in fuel consumption and 25% reduction in CO2 emission levels
while even improving travel speed by 20%. Furthermore, results indicate that
even 25% CAV penetration can bring at least 50% of the total fuel and emission
reduction benefits.
Related papers
- Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale [3.5052652317043846]
We consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles.
A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions.
We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities.
arXiv Detail & Related papers (2024-08-10T18:23:59Z) - EcoFollower: An Environment-Friendly Car Following Model Considering Fuel Consumption [9.42048156323799]
This study introduces EcoFollower, a novel eco-car-following model developed using reinforcement learning (RL) to optimize fuel consumption in car-following scenarios.
The model achieved a significant reduction in fuel consumption, lowering it by 10.42% compared to actual driving scenarios.
arXiv Detail & Related papers (2024-07-22T16:48:37Z) - Analyzing Emissions and Energy Efficiency at Unsignalized Real-world
Intersections Under Mixed Traffic Control [27.838827756692243]
U.S. transportation generates 28% of U.S. emissions.
Recent research has developed mixed traffic control eco-driving strategies at signalized intersections to decrease emissions.
We provide an emissions analysis on unsignalized intersections with complex, real-world topologies and traffic demands.
arXiv Detail & Related papers (2023-11-20T16:02:33Z) - Exploring sustainable pathways for urban traffic decarbonization in downtown Toronto [4.378407481656902]
This study explores decarbonization strategies for urban traffic in downtown Toronto through microsimulation.
Using transformer-based prediction models, we forecast Greenhouse Gas (GHG) and Nitrogen Oxides (NOx) emissions.
The key findings show that 100% Battery Electric Vehicles (BEVs) reduce GHG emissions by 75%, but face challenges related to cost and infrastructure.
arXiv Detail & Related papers (2023-08-28T22:17:36Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
Semi-cooperative behaviors are intrinsic properties of human drivers and should be considered for autonomous driving.
New autonomous planners can consider the social value orientation (SVO) of human drivers to generate socially-compliant trajectories.
We present study of implicit semi-cooperative driving where agents deploy a game-theoretic version of iterative best response.
arXiv Detail & Related papers (2023-04-23T16:01:36Z) - Driver Assistance Eco-driving and Transmission Control with Deep
Reinforcement Learning [2.064612766965483]
In this paper, a model-free deep reinforcement learning (RL) control agent is proposed for active Eco-driving assistance.
It trades-off fuel consumption against other driver-accommodation objectives, and learns optimal traction torque and transmission shifting policies from experience.
It shows superior performance in minimizing fuel consumption compared to a baseline controller that has full knowledge of fuel-efficiency tables.
arXiv Detail & Related papers (2022-12-15T02:52:07Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.