Quantum mappings and designs
- URL: http://arxiv.org/abs/2204.13008v1
- Date: Wed, 27 Apr 2022 15:25:49 GMT
- Title: Quantum mappings and designs
- Authors: Grzegorz Rajchel-Mieldzio\'c
- Abstract summary: We provide several novel constructions useful for the comprehension of quantum mechanics.
The unistochasticity problem, which relates the classical and the quantum domain, is solved in specific cases.
We study cardinality as a measure of "quantumness" of quantum Latin squares and quantum Sudoku (SudoQ)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to use quantum devices for computations, it is necessary to
understand the intricacies of the theoretical description. To this end, we
provide several novel constructions useful for the comprehension of quantum
mechanics from the perspective of mappings and designs. The unistochasticity
problem, which relates the classical and the quantum domain, is solved in
specific cases, e.g. for all matrices of dimension 4. Furthermore, we provide
an explicit formula for entangling power in the multipartite case. Most
importantly, the thesis presents and elaborates on the path that lead to the
recent construction of absolutely maximally entangled state of four subsystems
six levels each. Finally, we study cardinality as a measure of "quantumness" of
quantum Latin squares and quantum Sudoku (SudoQ). Arrays of the highest
cardinality yield families of quantum measurements of special properties. A
connection between SudoQ designs and mutually unbiased bases is demonstrated.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - An explicit tensor notation for quantum computing [0.0]
This paper introduces a formalism that aims to describe the intricacies of quantum computation.
The focus is on providing a comprehensive representation of quantum states for multiple qubits and the quantum gates that manipulate them.
arXiv Detail & Related papers (2024-09-16T17:21:17Z) - Extreme quantum states and processes, and extreme points of general
spectrahedra in finite dimensional algebras [0.27195102129094995]
Convex sets of quantum states and processes play a central role in quantum theory and quantum information.
Many important examples of convex sets in quantum theory are spectrahedra, that is, sets of positive operators subject to affine constraints.
This contribution provides a characterisation of the extreme points of general spectrahedra, and bounds on the ranks of the corresponding operators.
arXiv Detail & Related papers (2023-11-18T01:31:16Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Characterizing quantum ensemble using geometric measure of quantum
coherence [1.5630592429258865]
We propose a quantumness quantifier for the quantum ensemble.
It satisfies the necessary axioms of a bonafide measure of quantumness.
We compute the quantumness of a few well-known ensembles.
arXiv Detail & Related papers (2021-04-19T07:37:27Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.