論文の概要: Investigating writing style as a contributor to gender gaps in science and technology
- arxiv url: http://arxiv.org/abs/2204.13805v2
- Date: Thu, 13 Jun 2024 21:04:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 22:09:03.003908
- Title: Investigating writing style as a contributor to gender gaps in science and technology
- Title(参考訳): 科学技術におけるジェンダーギャップへの貢献としての書体調査
- Authors: Kara Kedrick, Ekaterina Levitskaya, Russell J. Funk,
- Abstract要約: 文章のスタイルは性別によって大きく異なり、女性はより関連性のある特徴を用いている。
より関連性の高い論文や特許も女性によって引用される傾向にある。
以上の結果から, 科学的テキストは人格を欠くものではないことが示唆され, 評価のバイアスに寄与する可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A growing stream of research finds that scientific contributions are evaluated differently depending on the gender of the author. In this article, we consider whether gender differences in writing styles - how men and women communicate their work - may contribute to these observed gender gaps. We ground our investigation in a framework for characterizing the linguistic style of written text, with two sets of features - informational (i.e., features that emphasize facts) and involved (i.e., features that emphasize relationships). Using a large sample of academic papers and patents, we find significant differences in writing style by gender, with women using more involved features in their writing. Papers and patents with more involved features also tend to be cited more by women. Our findings suggest that scientific text is not devoid of personal character, which could contribute to bias in evaluation, thereby compromising the norm of universalism as a foundational principle of science.
- Abstract(参考訳): 研究の流れの高まりは、科学的貢献が著者の性別によって異なる評価を受けていることを示している。
本稿では, 書記スタイルにおける男女差, 男性と女性のコミュニケーションの仕方, が, 観察された男女差に寄与するかどうかを検討する。
我々は,文章の言語的スタイルを特徴付ける枠組みとして,情報的特徴(事実を強調する特徴)と関係を強調する特徴(関係を強調する特徴)の2つの特徴からなる。
学術論文や特許の多種多様なサンプルを用いて, 性別による書式の違いがみられた。
より関連性の高い論文や特許も女性によって引用される傾向にある。
本研究は, 科学的テキストは人格を欠くものではなく, 評価のバイアスに寄与し, 科学の基本原理としての普遍主義の規範を妥協させることを示唆している。
関連論文リスト
- Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts [49.97673761305336]
我々は,3つの大きな言語モデル (LLM) を,人間の物語スタイルと潜在的な性別バイアスに適合させることで評価した。
以上の結果から,これらのモデルは一般的にヒトの投稿内容によく似たテキストを生成するが,スタイル的特徴の変化は有意な性差を示すことが示唆された。
論文 参考訳(メタデータ) (2024-06-27T19:26:11Z) - Less than one percent of words would be affected by gender-inclusive
language in German press texts [43.16629507708997]
平均して、すべてのトークンの1%以下は、ジェンダー非包摂的言語に影響されることが示されている。
この小さな割合は、ジェンダーを包含するドイツ語が言語を理解し学習する上で大きな障壁となるかどうかに疑問を呈している。
論文 参考訳(メタデータ) (2024-02-06T10:32:34Z) - Voices of Her: Analyzing Gender Differences in the AI Publication World [26.702520904075044]
我々は、AI分野における78K研究者のAI Scholarデータセットを用いて、いくつかの性別差を同定する。
女性第一著者の論文は、より長い文章、よりポジティブな感情の言葉、よりキャッチーなタイトルなど、異なる言語スタイルを示している。
私たちの分析は、私たちのAIコミュニティにおける現在の人口統計トレンドの窓口を提供し、将来、より多くの男女平等と多様性を奨励します。
論文 参考訳(メタデータ) (2023-05-24T00:40:49Z) - Much Ado About Gender: Current Practices and Future Recommendations for
Appropriate Gender-Aware Information Access [3.3903891679981593]
情報アクセス研究(と開発)は時にジェンダーを利用する。
この研究は、ジェンダーが何であるかの現在の理解と一致していないジェンダーについて様々な仮定を下している。
私たちがレビューするほとんどの論文は、性別が2つのカテゴリに分けることができないことを認めたとしても、性別のバイナリな概念に依存しています。
論文 参考訳(メタデータ) (2023-01-12T01:21:02Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
本研究では,事前学習したニューラルジェネレーションモデルにおける性別バイアスの程度に,高齢者がどのような影響を及ぼすかを検討する。
以上の結果から, GPT-2は, 両領域において, 女性を中年, 男性を中年として考えることにより, 偏見を増幅することが示された。
以上の結果から, GPT-2を用いて構築したNLPアプリケーションは, プロの能力において女性に害を与える可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:05:02Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
実践的なケーススタディとして,ジェンダーの区別の表現に焦点をあてる。
ジェンダーの概念が、異なる言語で共有された部分空間にエンコードされる範囲について検討する。
論文 参考訳(メタデータ) (2022-04-20T00:13:01Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
私たちは、英語でジェンダーインクルージョンを促進する一般的な方法である特異点についてケーススタディを行います。
本研究では, 人為的データを持たない1%の単語誤り率で, ジェンダーニュートラルな英語を学習できるモデルについて述べる。
論文 参考訳(メタデータ) (2021-02-12T21:47:48Z) - Gender bias in magazines oriented to men and women: a computational
approach [58.720142291102135]
女性指向の雑誌の内容と男性指向の雑誌の内容を比較する。
トピック・モデリングの手法により、雑誌で議論されている主要なテーマを特定し、これらのトピックの存在が時間とともに雑誌間でどの程度異なるかを定量化する。
以上の結果から,セクシュアオブジェクトとしての家族,ビジネス,女性の出現頻度は,時間とともに消失する傾向にあることが示唆された。
論文 参考訳(メタデータ) (2020-11-24T14:02:49Z) - Pick a Fight or Bite your Tongue: Investigation of Gender Differences in
Idiomatic Language Usage [9.892162266128306]
我々は、話者の性別に注釈を付けた、新しくて大きくて多様な自発言語生成コーパスをコンパイルする。
本研究は,男性と女性におけるテクスト表現言語の使用における区別に関する大規模な実証的研究である。
論文 参考訳(メタデータ) (2020-10-31T18:44:07Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。