論文の概要: Biologically-inspired neuronal adaptation improves learning in neural
networks
- arxiv url: http://arxiv.org/abs/2204.14008v1
- Date: Fri, 8 Apr 2022 16:16:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 01:10:50.177072
- Title: Biologically-inspired neuronal adaptation improves learning in neural
networks
- Title(参考訳): 生体インスパイアされたニューロン適応はニューラルネットワークの学習を改善する
- Authors: Yoshimasa Kubo, Eric Chalmers, Artur Luczak
- Abstract要約: 人間は今でも、多くのタスクで人工知能よりも優れています。
私たちは、機械学習アルゴリズムを改善するために、脳からインスピレーションを受けています。
我々はMNISTとCIFAR-10で訓練された多層パーセプトロンと畳み込みニューラルネットワークに適応する。
- 参考スコア(独自算出の注目度): 0.7734726150561086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since humans still outperform artificial neural networks on many tasks,
drawing inspiration from the brain may help to improve current machine learning
algorithms. Contrastive Hebbian Learning (CHL) and Equilibrium Propagation (EP)
are biologically plausible algorithms that update weights using only local
information (without explicitly calculating gradients) and still achieve
performance comparable to conventional backpropagation. In this study, we
augmented CHL and EP with Adjusted Adaptation, inspired by the adaptation
effect observed in neurons, in which a neuron's response to a given stimulus is
adjusted after a short time. We add this adaptation feature to multilayer
perceptrons and convolutional neural networks trained on MNIST and CIFAR-10.
Surprisingly, adaptation improved the performance of these networks. We discuss
the biological inspiration for this idea and investigate why Neuronal
Adaptation could be an important brain mechanism to improve the stability and
accuracy of learning.
- Abstract(参考訳): 人間は依然として多くのタスクで人工ニューラルネットワークを上回っているため、脳からインスピレーションを得て、現在の機械学習アルゴリズムを改善するのに役立つかもしれない。
Contrastive Hebbian Learning (CHL) と Equilibrium Propagation (EP) は、局所情報のみを用いて重みを更新する生物学的に妥当なアルゴリズムである。
本研究では,神経細胞の刺激に対するニューロンの応答を短時間で調節する適応効果に触発されて,chlとepを調節適応で拡張した。
我々は、MNISTとCIFAR-10で訓練された多層パーセプトロンと畳み込みニューラルネットワークにこの適応機能を付加する。
驚いたことに、これらのネットワークの性能は改善された。
このアイデアの生物学的なインスピレーションについて論じ,学習の安定性と正確性を改善する上で,なぜニューロン適応が重要な脳機構になるのかを検討する。
関連論文リスト
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Fast gradient-free activation maximization for neurons in spiking neural networks [5.805438104063613]
このようなループのための効率的な設計のフレームワークを提案する。
トレーニング中の人工ニューロンの最適刺激の変化を追跡する。
この洗練された最適刺激の形成は、分類精度の増大と関連している。
論文 参考訳(メタデータ) (2023-12-28T18:30:13Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Advantages of biologically-inspired adaptive neural activation in RNNs
during learning [10.357949759642816]
生体ニューロンの入力周波数応答曲線にインスパイアされた非線形活性化関数のパラメトリックファミリーを導入する。
アクティベーション適応はタスク固有のソリューションを提供し、場合によっては学習速度と性能の両方を改善する。
論文 参考訳(メタデータ) (2020-06-22T13:49:52Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Adaptive Reinforcement Learning through Evolving Self-Modifying Neural
Networks [0.0]
強化学習(RL)の現在の手法は、特定の時間間隔で反射した後にのみ新しい相互作用に適応する。
最近の研究は、バックプロパゲーションを用いて訓練された単純なRLタスクの性能を向上させるために、ニューラルネットワークに神経修飾塑性を付与することでこの問題に対処している。
ここでは,四足歩行におけるメタラーニングの課題について検討する。
その結果、自己修飾プラスチックネットワークを用いて進化したエージェントは、複雑なメタ学習タスクに適応し、グラデーションを使って更新された同じネットワークよりも優れていることが示される。
論文 参考訳(メタデータ) (2020-05-22T02:24:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。