Biologically-inspired neuronal adaptation improves learning in neural
networks
- URL: http://arxiv.org/abs/2204.14008v1
- Date: Fri, 8 Apr 2022 16:16:02 GMT
- Title: Biologically-inspired neuronal adaptation improves learning in neural
networks
- Authors: Yoshimasa Kubo, Eric Chalmers, Artur Luczak
- Abstract summary: Humans still outperform artificial neural networks on many tasks.
We draw inspiration from the brain to improve machine learning algorithms.
We add adaptation to multilayer perceptrons and convolutional neural networks trained on MNIST and CIFAR-10.
- Score: 0.7734726150561086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since humans still outperform artificial neural networks on many tasks,
drawing inspiration from the brain may help to improve current machine learning
algorithms. Contrastive Hebbian Learning (CHL) and Equilibrium Propagation (EP)
are biologically plausible algorithms that update weights using only local
information (without explicitly calculating gradients) and still achieve
performance comparable to conventional backpropagation. In this study, we
augmented CHL and EP with Adjusted Adaptation, inspired by the adaptation
effect observed in neurons, in which a neuron's response to a given stimulus is
adjusted after a short time. We add this adaptation feature to multilayer
perceptrons and convolutional neural networks trained on MNIST and CIFAR-10.
Surprisingly, adaptation improved the performance of these networks. We discuss
the biological inspiration for this idea and investigate why Neuronal
Adaptation could be an important brain mechanism to improve the stability and
accuracy of learning.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Fast gradient-free activation maximization for neurons in spiking neural networks [5.805438104063613]
We present a framework with an efficient design for such a loop.
We track changes in the optimal stimuli for artificial neurons during training.
This formation of refined optimal stimuli is associated with an increase in classification accuracy.
arXiv Detail & Related papers (2023-12-28T18:30:13Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Advantages of biologically-inspired adaptive neural activation in RNNs
during learning [10.357949759642816]
We introduce a novel parametric family of nonlinear activation functions inspired by input-frequency response curves of biological neurons.
We find that activation adaptation provides distinct task-specific solutions and in some cases, improves both learning speed and performance.
arXiv Detail & Related papers (2020-06-22T13:49:52Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
We show how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance.
We calculate a $>$100x energy improvement for our SRNNs over classical RNNs on the harder tasks.
arXiv Detail & Related papers (2020-05-24T01:04:53Z) - Adaptive Reinforcement Learning through Evolving Self-Modifying Neural
Networks [0.0]
Current methods in Reinforcement Learning (RL) only adjust to new interactions after reflection over a specified time interval.
Recent work addressing this by endowing artificial neural networks with neuromodulated plasticity have been shown to improve performance on simple RL tasks trained using backpropagation.
Here we study the problem of meta-learning in a challenging quadruped domain, where each leg of the quadruped has a chance of becoming unusable.
Results demonstrate that agents evolved using self-modifying plastic networks are more capable of adapting to complex meta-learning learning tasks, even outperforming the same network updated using gradient
arXiv Detail & Related papers (2020-05-22T02:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.