論文の概要: Learning When to Advise Human Decision Makers
- arxiv url: http://arxiv.org/abs/2209.13578v2
- Date: Mon, 3 Jul 2023 09:00:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-04 15:38:43.109973
- Title: Learning When to Advise Human Decision Makers
- Title(参考訳): 意思決定者へのアドバイスをいつ学ぶか
- Authors: Gali Noti and Yiling Chen
- Abstract要約: 本稿では,アルゴリズムがユーザと双方向に対話するAIシステムの設計を提案する。
大規模な実験の結果,私たちのアドバイスアプローチは,必要な時にアドバイスを提供することができることがわかった。
- 参考スコア(独自算出の注目度): 12.47847261193524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) systems are increasingly used for providing
advice to facilitate human decision making in a wide range of domains, such as
healthcare, criminal justice, and finance. Motivated by limitations of the
current practice where algorithmic advice is provided to human users as a
constant element in the decision-making pipeline, in this paper we raise the
question of when should algorithms provide advice? We propose a novel design of
AI systems in which the algorithm interacts with the human user in a two-sided
manner and aims to provide advice only when it is likely to be beneficial for
the user in making their decision. The results of a large-scale experiment show
that our advising approach manages to provide advice at times of need and to
significantly improve human decision making compared to fixed, non-interactive,
advising approaches. This approach has additional advantages in facilitating
human learning, preserving complementary strengths of human decision makers,
and leading to more positive responsiveness to the advice.
- Abstract(参考訳): 人工知能(AI)システムは、医療、刑事司法、金融など幅広い分野において、人間の意思決定を促進するためのアドバイスを提供するために、ますます使われてきている。
意思決定パイプラインの定数要素として人間にアルゴリズムアドバイスを提供する現在の慣行の制限により、本論文ではアルゴリズムがいつアドバイスを提供するべきかという疑問を提起する。
本稿では,AIシステムの新しい設計手法を提案する。この設計では,アルゴリズムが人間のユーザと双方向に対話し,ユーザが意思決定に有益である場合にのみアドバイスを提供することを目的としている。
大規模実験の結果、我々のアドバイスアプローチは必要に応じてアドバイスを提供し、固定的で非インタラクティブなアドバイスアプローチに比べて人間の意思決定を大幅に改善することがわかった。
このアプローチは、人間学習の促進、人間の意思決定者の補完的な強みの維持、そしてアドバイスに対するよりポジティブな応答性をもたらす。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Designing Algorithmic Recommendations to Achieve Human-AI Complementarity [2.4247752614854203]
人間の意思決定を支援するレコメンデーションアルゴリズムの設計を形式化する。
我々は、潜在的なアウトカムフレームワークを使用して、ヒトの意思決定者による二元的治療選択に対するレコメンデーションの効果をモデル化する。
機械学習で実装可能な最小限の推奨アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-05-02T17:15:30Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
Recommender、Analyzer、Devil's Advocateの3つのAIの役割について検討する。
以上の結果から,各役割のタスクパフォーマンス,信頼性の適切性,ユーザエクスペリエンスにおける長所と短所が明らかとなった。
これらの洞察は、異なる状況に応じて適応的な機能的役割を持つAIアシスタントを設計する上で、貴重な意味を提供する。
論文 参考訳(メタデータ) (2024-03-04T07:32:28Z) - Optimising Human-AI Collaboration by Learning Convincing Explanations [62.81395661556852]
本研究では,人間による意思決定によって安全を保ちながら協調的なシステムを構築する手法を提案する。
Ardentは、説明のための個人の好みに適応することで、効率的で効果的な意思決定を可能にする。
論文 参考訳(メタデータ) (2023-11-13T16:00:16Z) - Learning to Make Adherence-Aware Advice [8.419688203654948]
本稿では,人間の従順性を考慮した逐次意思決定モデルを提案する。
最適なアドバイスポリシーを学習し、重要なタイムスタンプでのみアドバイスを行う学習アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-10-01T23:15:55Z) - Doubting AI Predictions: Influence-Driven Second Opinion Recommendation [92.30805227803688]
我々は,補完的な意見を提供する可能性のある専門家を識別する,共通の組織的実践に基づいて,人間とAIのコラボレーションを強化する方法を提案する。
提案手法は、一部の専門家がアルゴリズムによる評価に異を唱えるかどうかを特定することによって、生産的な不一致を活用することを目的としている。
論文 参考訳(メタデータ) (2022-04-29T20:35:07Z) - Improving Human Sequential Decision-Making with Reinforcement Learning [29.334511328067777]
トレースデータから"ベストプラクティス"を抽出できる新しい機械学習アルゴリズムを設計する。
我々のアルゴリズムは、労働者の行動と最適な政策によって取られた行動のギャップを最もうまく埋めるヒントを選択する。
実験の結果,提案アルゴリズムが生成したチップは人体の性能を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-08-19T02:57:58Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Automatic Discovery of Interpretable Planning Strategies [9.410583483182657]
我々は、慣用的ポリシーを単純かつ解釈可能な記述に変換する方法であるAI-Interpretを紹介する。
フローチャートとしてAI-Interpretが生み出す決定ルールを守れば、人々の計画戦略や意思決定は大幅に改善される。
論文 参考訳(メタデータ) (2020-05-24T12:24:52Z) - A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous
Algorithmic Scores [85.12096045419686]
本研究では,児童虐待のホットラインスクリーニング決定を支援するアルゴリズムツールの採用について検討した。
まず、ツールがデプロイされたときに人間が行動を変えることを示します。
表示されたスコアが誤ったリスク推定である場合、人間はマシンの推奨に従わない可能性が低いことを示す。
論文 参考訳(メタデータ) (2020-02-19T07:27:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。