論文の概要: Deep Learning with Logical Constraints
- arxiv url: http://arxiv.org/abs/2205.00523v1
- Date: Sun, 1 May 2022 17:55:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 13:53:33.633385
- Title: Deep Learning with Logical Constraints
- Title(参考訳): 論理的制約を伴うディープラーニング
- Authors: Eleonora Giunchiglia, Mihaela Catalina Stoian, Thomas Lukasiewicz
- Abstract要約: 近年、ニューラルネットワークを得るために論理的に指定された背景知識を活用することへの関心が高まっている。
本調査では,背景知識の表現に使用する論理言語と,達成する目標に基づいて,これらの作品を再追跡し,分類する。
- 参考スコア(独自算出の注目度): 47.75779037641978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, there has been an increasing interest in exploiting
logically specified background knowledge in order to obtain neural models (i)
with a better performance, (ii) able to learn from less data, and/or (iii)
guaranteed to be compliant with the background knowledge itself, e.g., for
safety-critical applications. In this survey, we retrace such works and
categorize them based on (i) the logical language that they use to express the
background knowledge and (ii) the goals that they achieve.
- Abstract(参考訳): 近年、神経モデルを得るために論理的に特定された背景知識を活用しようという関心が高まっている。
(i)パフォーマンスが良い。
(ii)少ないデータから学ぶことができること、又は
(iii) 安全クリティカルなアプリケーションなど、バックグラウンド知識自体に準拠することが保証されている。
本調査では,これらの作品を追跡し,分類する。
(i)背景知識を表現するのに使用する論理言語
(ii)彼らが達成した目標。
関連論文リスト
- Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs [55.317267269115845]
Chain-of-Knowledge (CoK)は知識推論のための包括的なフレームワークである。
CoKにはデータセット構築とモデル学習の両方のための方法論が含まれている。
KnowReasonで広範な実験を行う。
論文 参考訳(メタデータ) (2024-06-30T10:49:32Z) - KEHRL: Learning Knowledge-Enhanced Language Representations with Hierarchical Reinforcement Learning [32.086825891769585]
知識強化事前学習言語モデル(KEPLM)は知識グラフ(KG)から関係トリプルを利用する
従来の研究は、知識の強化を2つの独立した操作、すなわち知識注入と知識統合として扱う。
本稿では,不正確な知識や無関係な知識の注入を避けるために,知識注入位置の検出と外部知識のモデルへの統合という課題を共同で解決する。
論文 参考訳(メタデータ) (2024-06-24T07:32:35Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
大規模言語モデル (LLMs) は、文脈内推論の実行において広範な知識と強力な能力を持っている。
本稿では、複数の知識を組み合わせて新しい知識を推論する、文脈外知識推論(OCKR)という、文脈外推論の重要な側面に焦点を当てる。
論文 参考訳(メタデータ) (2024-06-11T15:58:59Z) - Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary Object Detection (OVD) は、ベースと新規の両方のカテゴリからオブジェクトを認識できる最適なオブジェクト検出器を求めることを目的としている。
近年の進歩は、知識蒸留を利用して、事前訓練された大規模視覚言語モデルからオブジェクト検出のタスクに洞察力のある知識を伝達している。
本稿では,暗黙的背景知識を活用するための学習バックグラウンドプロンプトを提案するため,LBPと呼ばれる新しいOVDフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-01T17:32:26Z) - TRELM: Towards Robust and Efficient Pre-training for Knowledge-Enhanced Language Models [31.209774088374374]
本稿では,知識強化言語モデルのためのロバストかつ効率的な事前学習フレームワークであるTRELMを紹介する。
我々は、知識を3倍に注入するための堅牢なアプローチと、価値ある情報を取得するための知識強化されたメモリバンクを採用しています。
我々は,TRELMが事前学習時間を少なくとも50%削減し,知識探索タスクや複数の知識認識言語理解タスクにおいて,他のKEPLMよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-17T13:04:35Z) - Knowledgeable In-Context Tuning: Exploring and Exploiting Factual Knowledge for In-Context Learning [37.22349652230841]
大規模言語モデル(LLM)は、テキストベースのプロンプトとしてラベル付きトレーニング例を条件にすることで、コンテキスト内学習(ICL)を可能にする。
本稿では、3つの中核面におけるICLの性能に事実知識が不可欠であることを実証する。
In-Context Tuning (KICT) フレームワークを導入し,ICLの性能向上を図る。
論文 参考訳(メタデータ) (2023-09-26T09:06:39Z) - Knowledge-Augmented Reasoning Distillation for Small Language Models in
Knowledge-Intensive Tasks [90.11273439036455]
大規模言語モデル(LLM)は知識集約推論タスクにおいて有望なパフォーマンスを示している。
外部知識ベースから得られた知識を付加したLPMから理性を生成するための,小型LMを微調整する新しい手法であるKARDを提案する。
我々は,KARDが知識集約型推論データセットにおいて,小さなT5モデルとGPTモデルの性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2023-05-28T13:00:00Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
本稿では,学習前の言語モデルが外部コーパスから検索することなく,関連する潜在知識を活用できるようにするための,Knowledge Ruminationと呼ばれる新しいパラダイムを提案する。
本稿では,RoBERTa,DeBERTa,GPT-3などの言語モデルに適用する。
論文 参考訳(メタデータ) (2023-05-15T15:47:09Z) - Ontology-enhanced Prompt-tuning for Few-shot Learning [41.51144427728086]
少ないショットラーニングは、限られたサンプル数に基づいて予測を行うことを目的としている。
知識グラフやオントロジーライブラリなどの構造化データは、様々なタスクにおける数ショット設定の恩恵を受けるために利用されてきた。
論文 参考訳(メタデータ) (2022-01-27T05:41:36Z) - DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for
Natural Language Understanding [19.478288026844893]
知識強化事前学習言語モデル(英: Knowledge-Enhanced Pre-trained Language Models, KEPLM)は、知識グラフから3重関係を注入して言語理解能力を向上させる事前学習モデルである。
従来の研究は、知識グラフから得られた知識を表現するための知識エンコーダとモデルを統合する。
本稿では,事前学習,微調整,推論段階における事前学習言語モデルの知識注入過程を分解する,DKPLMという新しいKEPLMを提案する。
論文 参考訳(メタデータ) (2021-12-02T08:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。