Probabilistic Joint Recovery Method for CO$_2$ Plume Monitoring
- URL: http://arxiv.org/abs/2501.18761v1
- Date: Thu, 30 Jan 2025 21:32:01 GMT
- Title: Probabilistic Joint Recovery Method for CO$_2$ Plume Monitoring
- Authors: Zijun Deng, Rafael Orozco, Abhinav Prakash Gahlot, Felix J. Herrmann,
- Abstract summary: Carbon Capture and Storage is one of the few technologies capable of achieving net-negative CO$$ emissions.
We propose Probabilistic Joint Recovery Method (pJRM) to predict fluid flow patterns in CCS.
- Score: 1.1544215353883025
- License:
- Abstract: Reducing CO$_2$ emissions is crucial to mitigating climate change. Carbon Capture and Storage (CCS) is one of the few technologies capable of achieving net-negative CO$_2$ emissions. However, predicting fluid flow patterns in CCS remains challenging due to uncertainties in CO$_2$ plume dynamics and reservoir properties. Building on existing seismic imaging methods like the Joint Recovery Method (JRM), which lacks uncertainty quantification, we propose the Probabilistic Joint Recovery Method (pJRM). By estimating posterior distributions across surveys using a shared generative model, pJRM provides uncertainty information to improve risk assessment in CCS projects.
Related papers
- Enhancing Robustness Of Digital Shadow For CO2 Storage Monitoring With Augmented Rock Physics Modeling [0.276240219662896]
Time-lapse seismic imaging is essential for tracking CO2 migration but often struggles to capture the complexities of multi-phase subsurface flow.
Digital Shadows (DS), leveraging machine learning-driven data assimilation techniques such as nonlinear Bayesian filtering and generative AI, provide a more detailed, uncertainty-aware monitoring approach.
This study demonstrates that augmenting forecast ensembles with diverse rock physics models mitigates the impact of incorrect assumptions and improves predictive accuracy.
arXiv Detail & Related papers (2025-02-11T01:33:35Z) - Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - Diffusion-based subsurface multiphysics monitoring and forecasting [4.2193475197905705]
We propose a novel subsurface multiphysics monitoring and forecasting framework utilizing video diffusion models.
This approach can generate high-quality representations of CO$2$ evolution and associated changes in subsurface elastic properties.
Tests based on the Compass model show that the proposed method successfully captured the inherently complex physical phenomena associated with CO$$ monitoring.
arXiv Detail & Related papers (2024-07-25T23:04:37Z) - Inference of CO2 flow patterns -- a feasibility study [1.1249583407496222]
This study aims to develop a formulation capable of inferring flow patterns for regular and irregular flow from well and seismic data.
We are confident that the inferred uncertainty is reasonable because it correlates well with the observed errors.
This uncertainty stems from noise in the seismic data and from the lack of precise knowledge of the reservoir's fluid flow properties.
arXiv Detail & Related papers (2023-11-01T04:41:25Z) - COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically
for Model-Based RL [50.385005413810084]
Dyna-style model-based reinforcement learning contains two phases: model rollouts to generate sample for policy learning and real environment exploration.
$textttCOPlanner$ is a planning-driven framework for model-based methods to address the inaccurately learned dynamics model problem.
arXiv Detail & Related papers (2023-10-11T06:10:07Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - A POMDP Model for Safe Geological Carbon Sequestration [30.638615396429536]
Geological carbon capture and sequestration (CCS) is a promising and scalable approach for reducing global emissions.
If done incorrectly, it may lead to earthquakes and leakage of CO$$ back to the surface, harming both humans and the environment.
We propose that CCS operations be modeled as a partially observable Markov decision process (POMDP) and decisions be informed using automated planning algorithms.
arXiv Detail & Related papers (2022-10-25T01:04:13Z) - (Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach
for Climate Finance and Risk Assessment [64.83786252406105]
Retrospective Social Cost of Carbon Updating (ReSCCU) is a novel mechanism that corrects for limitations as empirically measured evidence is collected.
To implement ReSCCU in the context of carbon taxation, we propose Retroactive Carbon Pricing (ReCaP)
To alleviate systematic risks and minimize government involvement, we introduce the Private ReCaP (PReCaP) prediction market.
arXiv Detail & Related papers (2022-05-02T06:02:13Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z) - A Variational Auto-Encoder for Reservoir Monitoring [0.0]
Carbon dioxide Capture and Storage (CCS) is an important strategy in mitigating anthropogenic CO$$ emissions.
Here we present a deep learning method to reconstruct pressure fields and classify the flux out of the storage formation based on the pressure data from Above Zone Monitoring Interval (AZMI) wells.
arXiv Detail & Related papers (2020-09-23T12:33:09Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.