Lightweight Image Enhancement Network for Mobile Devices Using
Self-Feature Extraction and Dense Modulation
- URL: http://arxiv.org/abs/2205.00853v1
- Date: Mon, 2 May 2022 12:35:08 GMT
- Title: Lightweight Image Enhancement Network for Mobile Devices Using
Self-Feature Extraction and Dense Modulation
- Authors: Sangwook Baek, Yongsup Park, Youngo Park, Jungmin Lee, and Kwangpyo
Choi
- Abstract summary: Lightweight image enhancement network is proposed to restore details, texture, and structural information from low-resolution input images.
The proposed network include self-feature extraction module which produces modulation parameters from low-quality image itself.
Experimental results demonstrate better performance over existing approaches in terms of both quantitative and qualitative evaluations.
- Score: 0.9911248259437542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural network (CNN) based image enhancement methods such as
super-resolution and detail enhancement have achieved remarkable performances.
However, amounts of operations including convolution and parameters within the
networks cost high computing power and need huge memory resource, which limits
the applications with on-device requirements. Lightweight image enhancement
network should restore details, texture, and structural information from
low-resolution input images while keeping their fidelity. To address these
issues, a lightweight image enhancement network is proposed. The proposed
network include self-feature extraction module which produces modulation
parameters from low-quality image itself, and provides them to modulate the
features in the network. Also, dense modulation block is proposed for unit
block of the proposed network, which uses dense connections of concatenated
features applied in modulation layers. Experimental results demonstrate better
performance over existing approaches in terms of both quantitative and
qualitative evaluations.
Related papers
- VmambaIR: Visual State Space Model for Image Restoration [36.11385876754612]
We propose VmambaIR, which introduces State Space Models (SSMs) with linear complexity into comprehensive image restoration tasks.
VmambaIR achieves state-of-the-art (SOTA) performance with much fewer computational resources and parameters.
arXiv Detail & Related papers (2024-03-18T02:38:55Z) - Adaptive Convolutional Neural Network for Image Super-resolution [43.06377001247278]
We propose a adaptive convolutional neural network for image super-resolution (ADSRNet)
The upper network can enhance relation of context information, salient information relation of a kernel mapping and relations of shallow and deep layers.
The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information.
arXiv Detail & Related papers (2024-02-24T03:44:06Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Spatially-Adaptive Feature Modulation for Efficient Image
Super-Resolution [90.16462805389943]
We develop a spatially-adaptive feature modulation (SAFM) mechanism upon a vision transformer (ViT)-like block.
Proposed method is $3times$ smaller than state-of-the-art efficient SR methods.
arXiv Detail & Related papers (2023-02-27T14:19:31Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training [112.96224800952724]
We propose cascaded modulation GAN (CM-GAN) to generate plausible image structures when dealing with large holes in complex images.
In each decoder block, global modulation is first applied to perform coarse semantic-aware synthesis structure, then spatial modulation is applied on the output of global modulation to further adjust the feature map in a spatially adaptive fashion.
In addition, we design an object-aware training scheme to prevent the network from hallucinating new objects inside holes, fulfilling the needs of object removal tasks in real-world scenarios.
arXiv Detail & Related papers (2022-03-22T16:13:27Z) - Deep Networks for Image and Video Super-Resolution [30.75380029218373]
Single image super-resolution (SISR) is built using efficient convolutional units we refer to as mixed-dense connection blocks (MDCB)
We train two versions of our network to enhance complementary image qualities using different loss configurations.
We further employ our network for super-resolution task, where our network learns to aggregate information from multiple frames and maintain-temporal consistency.
arXiv Detail & Related papers (2022-01-28T09:15:21Z) - Lightweight Image Super-Resolution with Multi-scale Feature Interaction
Network [15.846394239848959]
We present a lightweight multi-scale feature interaction network (MSFIN)
For lightweight SISR, MSFIN expands the receptive field and adequately exploits the informative features of the low-resolution observed images.
Our proposed MSFIN can achieve comparable performance against the state-of-the-arts with a more lightweight model.
arXiv Detail & Related papers (2021-03-24T07:25:21Z) - Image deblurring based on lightweight multi-information fusion network [6.848061582669787]
We propose a lightweight multiinformation fusion network (LMFN) for image deblurring.
In the encoding stage, the image feature is reduced to various smallscale spaces for multi-scale information extraction and fusion.
Then, a distillation network is used in the decoding stage, which allows the network benefit the most from residual learning.
Our network can achieve state-of-the-art image deblurring result with smaller number of parameters and outperforms existing methods in model complexity.
arXiv Detail & Related papers (2021-01-14T00:37:37Z) - Multi-Scale Boosted Dehazing Network with Dense Feature Fusion [92.92572594942071]
We propose a Multi-Scale Boosted Dehazing Network with Dense Feature Fusion based on the U-Net architecture.
We show that the proposed model performs favorably against the state-of-the-art approaches on the benchmark datasets as well as real-world hazy images.
arXiv Detail & Related papers (2020-04-28T09:34:47Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.