A Deep Learning-based Integrated Framework for Quality-aware
Undersampled Cine Cardiac MRI Reconstruction and Analysis
- URL: http://arxiv.org/abs/2205.01673v1
- Date: Mon, 2 May 2022 18:02:22 GMT
- Title: A Deep Learning-based Integrated Framework for Quality-aware
Undersampled Cine Cardiac MRI Reconstruction and Analysis
- Authors: In\^es P. Machado, Esther Puyol-Ant\'on, Kerstin Hammernik, Gast\~ao
Cruz, Devran Ugurlu, Ihsane Olakorede, Ilkay Oksuz, Bram Ruijsink, Miguel
Castelo-Branco, Alistair A. Young, Claudia Prieto, Julia A. Schnabel and
Andrew P. King
- Abstract summary: We present a quality-controlled integrated framework for reconstruction, segmentation and downstream analysis of undersampled cine CMR data.
The framework enables active acquisition of radial k-space data, in which acquisition can be stopped as soon as acquired data are sufficient to produce high quality reconstructions and segmentations.
- Score: 4.780348242743022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cine cardiac magnetic resonance (CMR) imaging is considered the gold standard
for cardiac function evaluation. However, cine CMR acquisition is inherently
slow and in recent decades considerable effort has been put into accelerating
scan times without compromising image quality or the accuracy of derived
results. In this paper, we present a fully-automated, quality-controlled
integrated framework for reconstruction, segmentation and downstream analysis
of undersampled cine CMR data. The framework enables active acquisition of
radial k-space data, in which acquisition can be stopped as soon as acquired
data are sufficient to produce high quality reconstructions and segmentations.
This results in reduced scan times and automated analysis, enabling robust and
accurate estimation of functional biomarkers. To demonstrate the feasibility of
the proposed approach, we perform realistic simulations of radial k-space
acquisitions on a dataset of subjects from the UK Biobank and present results
on in-vivo cine CMR k-space data collected from healthy subjects. The results
demonstrate that our method can produce quality-controlled images in a mean
scan time reduced from 12 to 4 seconds per slice, and that image quality is
sufficient to allow clinically relevant parameters to be automatically
estimated to within 5% mean absolute difference.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Attention Incorporated Network for Sharing Low-rank, Image and K-space Information during MR Image Reconstruction to Achieve Single Breath-hold Cardiac Cine Imaging [9.531827741901662]
We propose to embed information from multiple domains, including low-rank, image, and k-space, in a novel deep learning network for MRI reconstruction.
A-LIKNet adopts a parallel-branch structure, enabling independent learning in the k-space and image domain.
arXiv Detail & Related papers (2024-07-03T11:54:43Z) - Attention-aware non-rigid image registration for accelerated MR imaging [10.47044784972188]
We introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI.
We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels.
We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories.
arXiv Detail & Related papers (2024-04-26T14:25:07Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Dual-Domain Self-Supervised Learning for Accelerated Non-Cartesian MRI
Reconstruction [14.754843942604472]
We present a fully self-supervised approach for accelerated non-Cartesian MRI reconstruction.
In training, the undersampled data are split into disjoint k-space domain partitions.
For the image-level self-supervision, we enforce appearance consistency obtained from the original undersampled data.
arXiv Detail & Related papers (2023-02-18T06:11:49Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Quality-aware Cine Cardiac MRI Reconstruction and Analysis from
Undersampled k-space Data [7.022090490184671]
We propose an end-to-end quality-aware cine short-axis cardiac MRI framework that combines image acquisition and reconstruction with downstream tasks.
The framework consists of a deep learning model for the reconstruction of 2D+t cardiac cine MRI images from undersampled data.
Our results show that we can produce quality-controlled images in a scan time reduced from 12 to 4 seconds per slice, enabling reliable estimates of cardiac functional parameters.
arXiv Detail & Related papers (2021-09-16T13:08:54Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
We go below the MRI acceleration factors reported by all published papers that reference the original fastMRI challenge.
We consider powerful deep learning based image enhancement methods to compensate for the underresolved images.
The quality of the reconstructed images surpasses that of the other methods, yielding an MSE of 0.00114, a PSNR of 29.6 dB, and an SSIM of 0.956 at x16 acceleration factor.
arXiv Detail & Related papers (2021-03-04T10:45:01Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.