Machine Learning based Framework for Robust Price-Sensitivity Estimation
with Application to Airline Pricing
- URL: http://arxiv.org/abs/2205.01875v1
- Date: Wed, 4 May 2022 03:35:12 GMT
- Title: Machine Learning based Framework for Robust Price-Sensitivity Estimation
with Application to Airline Pricing
- Authors: Ravi Kumar, Shahin Boluki, Karl Isler, Jonas Rauch and Darius Walczak
- Abstract summary: We consider the problem of dynamic pricing of a product in the presence of feature-dependent price sensitivity.
We construct a flexible yet interpretable demand model where the price related part is parametric.
The remaining (nuisance) part of the model is non-parametric and can be modeled via sophisticated ML techniques.
- Score: 20.5282398019991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of dynamic pricing of a product in the presence of
feature-dependent price sensitivity. Based on the Poisson semi-parametric
approach, we construct a flexible yet interpretable demand model where the
price related part is parametric while the remaining (nuisance) part of the
model is non-parametric and can be modeled via sophisticated ML techniques. The
estimation of price-sensitivity parameters of this model via direct one-stage
regression techniques may lead to biased estimates. We propose a two-stage
estimation methodology which makes the estimation of the price-sensitivity
parameters robust to biases in the nuisance parameters of the model. In the
first-stage we construct the estimators of observed purchases and price given
the feature vector using sophisticated ML estimators like deep neural networks.
Utilizing the estimators from the first-stage, in the second-stage we leverage
a Bayesian dynamic generalized linear model to estimate the price-sensitivity
parameters. We test the performance of the proposed estimation schemes on
simulated and real sales transaction data from Airline industry. Our numerical
studies demonstrate that the two-stage approach provides more accurate
estimates of price-sensitivity parameters as compared to direct one-stage
approach.
Related papers
- Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
This work uses variational inference to estimate the parameters of an opinion dynamics ABM.
We transform the inference process into an optimization problem suitable for automatic differentiation.
Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods.
arXiv Detail & Related papers (2024-03-08T14:45:18Z) - Choice Models and Permutation Invariance: Demand Estimation in
Differentiated Products Markets [5.8429701619765755]
We demonstrate how non-parametric estimators like neural nets can easily approximate choice functions.
Our proposed functionals can flexibly capture underlying consumer behavior in a completely data-driven fashion.
Our empirical analysis confirms that the estimator generates realistic and comparable own- and cross-price elasticities.
arXiv Detail & Related papers (2023-07-13T23:24:05Z) - Leveraging Variational Autoencoders for Parameterized MMSE Estimation [10.141454378473972]
We propose a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator.
The derived estimator is shown to approximate the minimum mean squared error estimator by utilizing the variational autoencoder as a generative prior for the estimation problem.
We conduct a rigorous analysis by bounding the difference between the proposed and the minimum mean squared error estimator.
arXiv Detail & Related papers (2023-07-11T15:41:34Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - A Data-Driven Machine Learning Approach for Consumer Modeling with Load
Disaggregation [1.6058099298620423]
We propose a generic class of data-driven semiparametric models derived from consumption data of residential consumers.
In the first stage, disaggregation of the load into fixed and shiftable components is accomplished by means of a hybrid algorithm.
In the second stage, the model parameters are estimated using an L2-norm, epsilon-insensitive regression approach.
arXiv Detail & Related papers (2020-11-04T13:36:11Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.