Choice Models and Permutation Invariance: Demand Estimation in
Differentiated Products Markets
- URL: http://arxiv.org/abs/2307.07090v2
- Date: Tue, 20 Feb 2024 14:17:45 GMT
- Title: Choice Models and Permutation Invariance: Demand Estimation in
Differentiated Products Markets
- Authors: Amandeep Singh, Ye Liu, and Hema Yoganarasimhan
- Abstract summary: We demonstrate how non-parametric estimators like neural nets can easily approximate choice functions.
Our proposed functionals can flexibly capture underlying consumer behavior in a completely data-driven fashion.
Our empirical analysis confirms that the estimator generates realistic and comparable own- and cross-price elasticities.
- Score: 5.8429701619765755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Choice modeling is at the core of understanding how changes to the
competitive landscape affect consumer choices and reshape market equilibria. In
this paper, we propose a fundamental characterization of choice functions that
encompasses a wide variety of extant choice models. We demonstrate how
non-parametric estimators like neural nets can easily approximate such
functionals and overcome the curse of dimensionality that is inherent in the
non-parametric estimation of choice functions. We demonstrate through extensive
simulations that our proposed functionals can flexibly capture underlying
consumer behavior in a completely data-driven fashion and outperform
traditional parametric models. As demand settings often exhibit endogenous
features, we extend our framework to incorporate estimation under endogenous
features. Further, we also describe a formal inference procedure to construct
valid confidence intervals on objects of interest like price elasticity.
Finally, to assess the practical applicability of our estimator, we utilize a
real-world dataset from S. Berry, Levinsohn, and Pakes (1995). Our empirical
analysis confirms that the estimator generates realistic and comparable own-
and cross-price elasticities that are consistent with the observations reported
in the existing literature.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
This work uses variational inference to estimate the parameters of an opinion dynamics ABM.
We transform the inference process into an optimization problem suitable for automatic differentiation.
Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods.
arXiv Detail & Related papers (2024-03-08T14:45:18Z) - Fair Multivariate Adaptive Regression Splines for Ensuring Equity and
Transparency [1.124958340749622]
We propose a fair predictive model based on MARS that incorporates fairness measures in the learning process.
MARS is a non-parametric regression model that performs feature selection, handles non-linear relationships, generates interpretable decision rules, and derives optimal splitting criteria on the variables.
We apply our fairMARS model to real-world data and demonstrate its effectiveness in terms of accuracy and equity.
arXiv Detail & Related papers (2024-02-23T19:02:24Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Attitudes and Latent Class Choice Models using Machine learning [0.0]
We present a method of efficiently incorporating attitudinal indicators in the specification of Latent Class Choice Models (LCCM)
This formulation overcomes structural equations in its capability of exploring the relationship between the attitudinal indicators and the decision choice.
We test our proposed framework for estimating a Car-Sharing (CS) service subscription choice with stated preference data from Copenhagen, Denmark.
arXiv Detail & Related papers (2023-02-20T10:03:01Z) - Machine Learning based Framework for Robust Price-Sensitivity Estimation
with Application to Airline Pricing [20.5282398019991]
We consider the problem of dynamic pricing of a product in the presence of feature-dependent price sensitivity.
We construct a flexible yet interpretable demand model where the price related part is parametric.
The remaining (nuisance) part of the model is non-parametric and can be modeled via sophisticated ML techniques.
arXiv Detail & Related papers (2022-05-04T03:35:12Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
We show that variational Bayesian methods can yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models.
We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.
arXiv Detail & Related papers (2021-07-08T03:40:18Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Deep Learning for Individual Heterogeneity: An Automatic Inference
Framework [2.6813717321945107]
We develop methodology for estimation and inference using machine learning to enrich economic models.
We show how to design the network architecture to match the structure of the economic model.
We obtain inference based on a novel influence function calculation.
arXiv Detail & Related papers (2020-10-28T01:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.