論文の概要: Neuroevolutionary Multi-objective approaches to Trajectory Prediction in
Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2205.02105v3
- Date: Fri, 6 May 2022 16:36:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 10:41:27.738678
- Title: Neuroevolutionary Multi-objective approaches to Trajectory Prediction in
Autonomous Vehicles
- Title(参考訳): 自律走行車における軌道予測のための神経進化多目的アプローチ
- Authors: Fergal Stapleton, Edgar Galv\'an, Ganesh Sistu and Senthil Yogamani
- Abstract要約: 我々は、神経進化と進化的多目的最適化の共通点に焦点を当てる。
本稿では,CNNとLong-Short Term Memoryネットワークからなる畳み込みニューラルネットワークについて検討する。
これらの目的が、自律走行車における軌道予測のための神経進化において、肯定的または有害な効果を持つかを示す。
- 参考スコア(独自算出の注目度): 2.9552300389898094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The incentive for using Evolutionary Algorithms (EAs) for the automated
optimization and training of deep neural networks (DNNs), a process referred to
as neuroevolution, has gained momentum in recent years. The configuration and
training of these networks can be posed as optimization problems. Indeed, most
of the recent works on neuroevolution have focused their attention on
single-objective optimization. Moreover, from the little research that has been
done at the intersection of neuroevolution and evolutionary multi-objective
optimization (EMO), all the research that has been carried out has focused
predominantly on the use of one type of DNN: convolutional neural networks
(CNNs), using well-established standard benchmark problems such as MNIST. In
this work, we make a leap in the understanding of these two areas
(neuroevolution and EMO), regarded in this work as neuroevolutionary
multi-objective, by using and studying a rich DNN composed of a CNN and
Long-short Term Memory network. Moreover, we use a robust and challenging
vehicle trajectory prediction problem. By using the well-known Non-dominated
Sorting Genetic Algorithm-II, we study the effects of five different
objectives, tested in categories of three, allowing us to show how these
objectives have either a positive or detrimental effect in neuroevolution for
trajectory prediction in autonomous vehicles.
- Abstract(参考訳): 神経進化と呼ばれるプロセスであるディープニューラルネットワーク(dnn)の自動最適化とトレーニングに進化アルゴリズム(eas)を使用するインセンティブは、近年勢いを増している。
これらのネットワークの構成とトレーニングは最適化問題として考えられる。
実際、神経進化に関する最近の研究の多くは、単目的最適化に重点を置いている。
さらに、神経進化と進化的多目的最適化(EMO)の交差点で実施された小さな研究から、これまで実施されてきたすべての研究は、MNISTのような確立された標準ベンチマーク問題を使用して、1種類のDNN(畳み込みニューラルネットワーク)の使用に主に焦点を合わせてきた。
本研究では,CNNとLong-Short Term MemoryネットワークからなるリッチDNNを用いて,これら2つの領域(神経進化とEMO)の理解を飛躍的に進める。
さらに,ロバストで挑戦的な車両軌道予測問題を用いる。
既知の非支配的ソート遺伝アルゴリズムiiを用いて,3つのカテゴリでテストされた5つの異なる目的の効果について検討し,これらの目的が自律走行車における軌道予測に対する神経進化における肯定的あるいは有害な効果を示す。
関連論文リスト
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - NeuroLGP-SM: Scalable Surrogate-Assisted Neuroevolution for Deep Neural Networks [0.0]
進化的アルゴリズムは、人工深層ニューラルネットワーク(DNN)のアーキテクチャ構成とトレーニングにおいて重要な役割を果たす
本研究では, DNNから出力される表現型距離ベクトルと, Kriging partial Least Squares (KPLS) を用いて探索する。
提案手法はニューロLinear Genetic Programming surrogate model (NeuroLGP-SM) と名付けられ, 完全評価を必要とせず, DNNの適合性を効率的に正確に推定する。
論文 参考訳(メタデータ) (2024-04-12T19:15:38Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
既存のディープラーニングソリューションには,3つの大きな制限がある。
我々はフェデレートグラフベースの多軌道進化ネットワークであるFedGmTE-Net++を紹介する。
フェデレーションの力を利用して、限られたデータセットを持つ多種多様な病院の地域学習を集約する。
論文 参考訳(メタデータ) (2024-01-01T10:20:01Z) - Seeking Next Layer Neurons' Attention for Error-Backpropagation-Like
Training in a Multi-Agent Network Framework [6.446189857311325]
本研究は, ニューロンの局所的な目的として, エラーのバックプロパゲーションと類似性を示すことを提案する。
本研究では,局所的な目的を最大化するために,自律神経系と自律神経系を組み合わせたニューラルネットワークについて検討する。
3つのデータセットの実験を通して、これらのマルチエージェントニューラルネットワークの学習能力を実証する。
論文 参考訳(メタデータ) (2023-10-15T21:07:09Z) - Evolutionary Multi-objective Optimisation in Neurotrajectory Prediction [0.0]
この研究は、車両軌道予測のための神経進化の進歩的な一歩を踏み出す。
この目的のために、CNNとLong-Short Term Memory NetworkからなるリッチなANNが採用されている。
EMOアルゴリズム、NSGA-II、MOEA/Dも採用されている。
論文 参考訳(メタデータ) (2023-08-04T21:06:26Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Initial Steps Towards Tackling High-dimensional Surrogate Modeling for
Neuroevolution Using Kriging Partial Least Squares [0.0]
サロゲート支援進化アルゴリズム(SAEA)は、進化計算システムにおける適合関数の近似を目的とし、効率的な計算モデルを使用することを目的としている。
SAEAsコミュニティからほとんど注目を集めていない、創発的でエキサイティングな領域は、神経進化にある。
近似代理モデルの効率的な計算を可能にするKriging partial Least Squares法をどう利用できるかを示す。
論文 参考訳(メタデータ) (2023-05-05T15:17:03Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。