論文の概要: Axonal Delay As a Short-Term Memory for Feed Forward Deep Spiking Neural
Networks
- arxiv url: http://arxiv.org/abs/2205.02115v1
- Date: Wed, 20 Apr 2022 16:56:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 03:37:53.475414
- Title: Axonal Delay As a Short-Term Memory for Feed Forward Deep Spiking Neural
Networks
- Title(参考訳): フィードフォワード型ディープスパイクニューラルネットワークの短期記憶としての軸索遅延
- Authors: Pengfei Sun, Longwei Zhu and Dick Botteldooren
- Abstract要約: 近年の研究では、学習過程において神経細胞の時間遅延が重要な役割を担っていることが判明している。
スパイクの正確なタイミングを設定することは、SNNにおける時間情報の伝達過程を理解し改善するための有望な方向である。
本稿では,教師付き学習に時間遅延を統合することの有効性を検証するとともに,短期記憶による軸索遅延を変調するモジュールを提案する。
- 参考スコア(独自算出の注目度): 3.985532502580783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The information of spiking neural networks (SNNs) are propagated between the
adjacent biological neuron by spikes, which provides a computing paradigm with
the promise of simulating the human brain. Recent studies have found that the
time delay of neurons plays an important role in the learning process.
Therefore, configuring the precise timing of the spike is a promising direction
for understanding and improving the transmission process of temporal
information in SNNs. However, most of the existing learning methods for spiking
neurons are focusing on the adjustment of synaptic weight, while very few
research has been working on axonal delay. In this paper, we verify the
effectiveness of integrating time delay into supervised learning and propose a
module that modulates the axonal delay through short-term memory. To this end,
a rectified axonal delay (RAD) module is integrated with the spiking model to
align the spike timing and thus improve the characterization learning ability
of temporal features. Experiments on three neuromorphic benchmark datasets :
NMNIST, DVS Gesture and N-TIDIGITS18 show that the proposed method achieves the
state-of-the-art performance while using the fewest parameters.
- Abstract(参考訳): スパイクニューラルネットワーク(SNN)の情報は、隣接する生物学的ニューロン間でスパイクによって伝達され、人間の脳をシミュレートする約束を伴う計算パラダイムを提供する。
近年の研究では、学習過程においてニューロンの時間的遅延が重要な役割を果たすことが示されている。
したがって、スパイクの正確なタイミングを設定することは、SNNにおける時間情報の伝達過程を理解し改善するための有望な方向である。
しかしながら、スパイクニューロンの既存の学習方法のほとんどはシナプス重量の調整に焦点を当てているが、軸索遅延の研究はほとんど行われていない。
本稿では,教師付き学習に時間遅延を統合することの有効性を検証し,短期記憶による軸索遅延を調節するモジュールを提案する。
この目的のために、修正された軸索遅延(RAD)モジュールをスパイクモデルに統合してスパイクタイミングを調整し、時間的特徴の特性学習能力を向上させる。
NMNIST, DVS Gesture, N-TIDIGITS18 の3つのニューロモルフィック・ベンチマーク・データセットに対する実験により, 提案手法が最少パラメータを用いて最先端の性能を達成することを示す。
関連論文リスト
- Zero-Shot Temporal Resolution Domain Adaptation for Spiking Neural Networks [3.2366933261812076]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたディープニューラルネットワークであり、時間的情報を効率的に抽出する。
SNNモデルパラメータは時間分解能に敏感であり、エッジでのターゲットデータの時間分解能が同じでない場合、大幅な性能低下を引き起こす。
本稿では,ニューロンパラメータを適応させる3つの新しい領域適応手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T14:58:51Z) - Learning Delays Through Gradients and Structure: Emergence of Spatiotemporal Patterns in Spiking Neural Networks [0.06752396542927405]
学習可能なシナプス遅延を2つのアプローチで組み込んだスパイキングニューラルネットワーク(SNN)モデルを提案する。
後者のアプローチでは、ネットワークは接続を選択してプーンし、スパース接続設定の遅延を最適化する。
本研究では,時間的データ処理のための効率的なSNNモデルを構築するために,遅延学習と動的プルーニングを組み合わせる可能性を示す。
論文 参考訳(メタデータ) (2024-07-07T11:55:48Z) - DelGrad: Exact gradients in spiking networks for learning transmission delays and weights [0.9411751957919126]
スパイキングニューラルネットワーク(SNN)は本質的には情報表現と処理のための信号のタイミングに依存している。
最近の研究は、これらの遅延とシナプス重みを学習する大きな利点を示している。
イベントベース方式で, シナプス重みと遅延の両方に関して, 正確な損失勾配を計算するための解析的アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-30T00:02:34Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Backpropagation with Biologically Plausible Spatio-Temporal Adjustment
For Training Deep Spiking Neural Networks [5.484391472233163]
ディープラーニングの成功は、バックプロパゲーションとは分離できない。
本研究では, 膜電位とスパイクの関係を再考する, 生体可塑性空間調整法を提案する。
次に,生物学的に妥当な時間的調整を提案し,時間的次元のスパイクを横切る誤差を伝搬させる。
論文 参考訳(メタデータ) (2021-10-17T15:55:51Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Astrocytes mediate analogous memory in a multi-layer neuron-astrocytic
network [52.77024349608834]
情報の一部が数秒間堅牢な活動パターンとして維持され、他の刺激が来なければ完全に消滅することを示す。
この種の短期記憶は、操作情報を数秒保存し、次のパターンとの重複を避けるために完全に忘れてしまう。
任意のパターンをロードし、一定の間隔で保存し、適切な手掛かりパターンを入力に適用した場合に検索する方法について示す。
論文 参考訳(メタデータ) (2021-08-31T16:13:15Z) - Bio-plausible Unsupervised Delay Learning for Extracting Temporal
Features in Spiking Neural Networks [0.548253258922555]
ニューロン間の伝導遅延の可塑性は、学習において基本的な役割を果たす。
シナプス遅延の正確な調整を理解することは、効果的な脳にインスパイアされた計算モデルを開発するのに役立ちます。
論文 参考訳(メタデータ) (2020-11-18T16:25:32Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。