論文の概要: Learning Delays Through Gradients and Structure: Emergence of Spatiotemporal Patterns in Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2407.18917v2
- Date: Fri, 08 Nov 2024 17:52:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:52:55.431338
- Title: Learning Delays Through Gradients and Structure: Emergence of Spatiotemporal Patterns in Spiking Neural Networks
- Title(参考訳): 勾配と構造を通して遅延を学習する:スパイクニューラルネットワークにおける時空間パターンの出現
- Authors: Balázs Mészáros, James Knight, Thomas Nowotny,
- Abstract要約: 学習可能なシナプス遅延を2つのアプローチで組み込んだスパイキングニューラルネットワーク(SNN)モデルを提案する。
後者のアプローチでは、ネットワークは接続を選択してプーンし、スパース接続設定の遅延を最適化する。
本研究では,時間的データ処理のための効率的なSNNモデルを構築するために,遅延学習と動的プルーニングを組み合わせる可能性を示す。
- 参考スコア(独自算出の注目度): 0.06752396542927405
- License:
- Abstract: We present a Spiking Neural Network (SNN) model that incorporates learnable synaptic delays through two approaches: per-synapse delay learning via Dilated Convolutions with Learnable Spacings (DCLS) and a dynamic pruning strategy that also serves as a form of delay learning. In the latter approach, the network dynamically selects and prunes connections, optimizing the delays in sparse connectivity settings. We evaluate both approaches on the Raw Heidelberg Digits keyword spotting benchmark using Backpropagation Through Time with surrogate gradients. Our analysis of the spatio-temporal structure of synaptic interactions reveals that, after training, excitation and inhibition group together in space and time. Notably, the dynamic pruning approach, which employs DEEP R for connection removal and RigL for reconnection, not only preserves these spatio-temporal patterns but outperforms per-synapse delay learning in sparse networks. Our results demonstrate the potential of combining delay learning with dynamic pruning to develop efficient SNN models for temporal data processing. Moreover, the preservation of spatio-temporal dynamics throughout pruning and rewiring highlights the robustness of these features, providing a solid foundation for future neuromorphic computing applications.
- Abstract(参考訳): 本稿では,学習可能なシナプス遅延を,Dilated Convolutions with Learnable Spacings (DCLS)によるシナプス毎遅延学習(per-synapse delay learning)と,遅延学習の一形態として機能する動的プルーニング戦略の2つのアプローチにより組み込んだスパイキングニューラルネットワーク(SNN)モデルを提案する。
後者のアプローチでは、ネットワークは動的に接続を選択してプーンし、スパース接続設定の遅延を最適化する。
我々は,Raw Heidelberg Digitsキーワードスポッティングベンチマークにおいて,Surrogateグラデーションを用いたBackpropagation Through Timeを用いて両方のアプローチを評価する。
シナプス相互作用の時空間構造を解析した結果, 訓練後, 励起, 抑制群が空間的, 時間的に一緒になることが明らかとなった。
特に、接続除去にDEEP R、再接続にRigLを用いる動的プルーニングアプローチは、これらの時空間パターンを保存するだけでなく、スパースネットワークにおけるシナプス毎遅延学習よりも優れる。
本研究では,時間的データ処理のための効率的なSNNモデルを構築するために,遅延学習と動的プルーニングを組み合わせる可能性を示す。
さらに、刈り取りと切り換えによる時空間的ダイナミクスの保存は、これらの特徴の堅牢性を強調し、将来のニューロモルフィックコンピューティングアプリケーションのための確かな基盤を提供する。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks [23.613277062707844]
Spiking Neural Networks (SNNs) は、生物学的ニューロンで見られる統合ファイアリーク機構をエミュレートする。
既存のSNNは、主にIntegrate-and-Fire Leaky(LIF)モデルに依存している。
本稿では,S-patioTemporal Circuit (STC) モデルを提案する。
論文 参考訳(メタデータ) (2024-06-01T11:17:27Z) - ELiSe: Efficient Learning of Sequences in Structured Recurrent Networks [1.5931140598271163]
局所的な常時オンおよび位相自由可塑性のみを用いて,効率的な学習シーケンスのモデルを構築した。
鳥の鳴き声学習のモックアップでELiSeの能力を実証し、パラメトリゼーションに関してその柔軟性を実証する。
論文 参考訳(メタデータ) (2024-02-26T17:30:34Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
潜在的な可能性や危険に関連する感覚的手がかりの同定は、長期間の遅延によって有用な手がかりを分離する無関係な事象によってしばしば複雑になる。
SNN(State-of-the-art spiking Neural Network)は、遠方のキュー間の長期的な時間的依存関係を確立する上で、依然として困難な課題である。
そこで本研究では,T-LIFとよばれる,生物学的にインスパイアされたTwo-compartment Leaky Integrate- and-Fireのスパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-25T08:54:41Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks [7.422913384086416]
ニューロモルフィックコンピューティングのアルゴリズムモデルの一つであるスパイキングニューラルネットワーク(SNN)は、時間的処理能力のために多くの研究注目を集めている。
SNNの既存のシナプス構造は、ほぼ完全な接続や空間的2次元畳み込みであり、どちらも時間的依存関係を適切に抽出できない。
生体シナプスからインスピレーションを得てシナプス接続SNNモデルを提案し,シナプス接続の時間的受容場を強化する。
時間的依存を伴うシナプスモデルの提供は、分類タスクにおけるSNNの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:13:22Z) - Latent Equilibrium: A unified learning theory for arbitrarily fast
computation with arbitrarily slow neurons [0.7340017786387767]
遅いコンポーネントのネットワークにおける推論と学習のための新しいフレームワークであるLatent Equilibriumを紹介する。
我々は, ニューロンとシナプスのダイナミクスを, 将来的なエネルギー関数から導出する。
本稿では,大脳皮質微小循環の詳細なモデルに我々の原理を適用する方法について述べる。
論文 参考訳(メタデータ) (2021-10-27T16:15:55Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal
Learning of Deep Spiking Neural Network [7.503685643036081]
空間的時間特性を持つ生物解析可能なSNNモデルは複雑な力学系である。
ニューロン非線形性を持つ無限インパルス応答(IIR)フィルタのネットワークとしてSNNを定式化する。
本稿では,最適シナプスフィルタカーネルと重みを求めることにより,時空間パターンを学習できる学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-19T01:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。