Optimal control for Hamiltonian parameter estimation in non-commuting
and bipartite quantum dynamics
- URL: http://arxiv.org/abs/2205.02429v2
- Date: Thu, 4 Aug 2022 14:32:51 GMT
- Title: Optimal control for Hamiltonian parameter estimation in non-commuting
and bipartite quantum dynamics
- Authors: Shushen Qin, Marcus Cramer, Christiane P. Koch, Alessio Serafini
- Abstract summary: We extend optimally controlled estimation schemes for single qubits to non-commuting dynamics as well as two interacting qubits.
These schemes demonstrate improvements in terms of maximal precision, time-stability, as well as robustness over uncontrolled protocols.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to characterise a Hamiltonian with high precision is crucial for
the implementation of quantum technologies. In addition to the well-developed
approaches utilising optimal probe states and optimal measurements, the method
of optimal control can be used to identify time-dependent pulses applied to the
system to achieve higher precision in the estimation of Hamiltonian parameters,
especially in the presence of noise. Here, we extend optimally controlled
estimation schemes for single qubits to non-commuting dynamics as well as two
interacting qubits, demonstrating improvements in terms of maximal precision,
time-stability, as well as robustness over uncontrolled protocols.
Related papers
- Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Quantum multiparameter estimation with graph states [6.152619905686453]
In the SU(2) dynamics, it is especially significant to achieve a simultaneous optimal multi parameter estimation.
We propose a simultaneous multi parameter estimation scheme that investigates evolution in SU(N) dynamics.
We prove that the graph state is the optimal state of quantum metrology, a set of optimal measurement basic can be found, and the precision limit of multi parameter estimation can attain the quantum Cram'er-Rao bound.
arXiv Detail & Related papers (2023-06-05T00:50:24Z) - Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - Control-enhanced quantum metrology under Markovian noise [10.626708718934022]
We propose a control-enhanced quantum metrology scheme to defend against realistic noises.
As a demonstration, we apply it to the problem of frequency estimation under several typical Markovian noise channels.
We show that our scheme performs better and can improve the estimation precision up to around one order of magnitude.
arXiv Detail & Related papers (2022-11-03T13:39:47Z) - Optimal protocols for quantum metrology with noisy measurements [0.0]
We show that a quantum preprocessing-optimized parameter determines the ultimate precision limit for quantum sensors under measurement noise.
Applications to noisy quantum states and thermometry are presented, as well as explicit circuit constructions of optimal controls.
arXiv Detail & Related papers (2022-10-20T16:37:47Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Generalizable control for multiparameter quantum metrology [20.506414877440644]
We study the generalizability of optimal control, namely, optimal controls that can be systematically updated across a range of parameters with minimal cost.
We argue that the generalization of reinforcement learning is through a mechanism similar to the analytical scheme.
arXiv Detail & Related papers (2020-12-24T18:04:46Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Quantum optimal control using phase-modulated driving fields [11.75064344240877]
We devise a novel variant of a gradient-free optimal-control method by introducing the idea of phase-modulated driving fields.
We numerically evaluate its performance and demonstrate the advantages over standard Fourier-basis methods in controlling an ensemble of two-level systems.
arXiv Detail & Related papers (2020-09-22T02:07:47Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.