Control-enhanced quantum metrology under Markovian noise
- URL: http://arxiv.org/abs/2211.01803v1
- Date: Thu, 3 Nov 2022 13:39:47 GMT
- Title: Control-enhanced quantum metrology under Markovian noise
- Authors: Yue Zhai, Xiaodong Yang, Kai Tang, Xinyue Long, Xinfang Nie, Tao Xin,
Dawei Lu, and Jun Li
- Abstract summary: We propose a control-enhanced quantum metrology scheme to defend against realistic noises.
As a demonstration, we apply it to the problem of frequency estimation under several typical Markovian noise channels.
We show that our scheme performs better and can improve the estimation precision up to around one order of magnitude.
- Score: 10.626708718934022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum metrology is supposed to significantly improve the precision of
parameter estimation by utilizing suitable quantum resources. However, the
predicted precision can be severely distorted by realistic noises. Here, we
propose a control-enhanced quantum metrology scheme to defend against these
noises for improving the metrology performance. Our scheme can automatically
alter the parameter encoding dynamics with adjustable controls, thus leading to
optimal resultant states that are less sensitive to the noises under
consideration. As a demonstration, we numerically apply it to the problem of
frequency estimation under several typical Markovian noise channels. Through
comparing our control-enhanced scheme with the standard scheme and the
ancilla-assisted scheme, we show that our scheme performs better and can
improve the estimation precision up to around one order of magnitude.
Furthermore, we conduct a proof-of-principle experiment in nuclear magnetic
resonance system to verify the effectiveness of the proposed scheme. The
research here is helpful for current quantum platforms to harness the power of
quantum metrology in realistic noise environments.
Related papers
- Entanglement-enhanced optimal quantum metrology [0.7373617024876725]
We propose a QOC scheme for QM that leverages entanglement and optimized coupling interactions with an ancillary system to provide enhanced metrological performance.
Our findings indicate that, in certain situations, schemes employing coherent control of a single particle are severely limited.
arXiv Detail & Related papers (2024-11-06T16:08:13Z) - Optimal Quantum Purity Amplification [2.05170973574812]
Quantum purity amplification (QPA) offers a novel approach to counteract the pervasive noise that degrades quantum states.
We present the optimal QPA protocol for general quantum systems against global depolarizing noise.
Our findings suggest that QPA could improve the performance of quantum information processing tasks.
arXiv Detail & Related papers (2024-09-26T17:46:00Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Simulating Neutral Atom Quantum Systems with Tensor Network States [0.0]
We show that circuits with a large number of qubits fail more often under noise that depletes the qubit population.
We also find that the optimized parameters are especially robust to noise, suggesting that a noisier quantum system can be used to find the optimal parameters.
arXiv Detail & Related papers (2023-09-15T17:38:37Z) - Optimal protocols for quantum metrology with noisy measurements [0.0]
We show that a quantum preprocessing-optimized parameter determines the ultimate precision limit for quantum sensors under measurement noise.
Applications to noisy quantum states and thermometry are presented, as well as explicit circuit constructions of optimal controls.
arXiv Detail & Related papers (2022-10-20T16:37:47Z) - Robust optimization for quantum reinforcement learning control using
partial observations [10.975734427172231]
Full observation of quantum state is experimentally infeasible due to the exponential scaling of the number of required quantum measurements on the number of qubits.
This control scheme is compatible with near-term quantum devices, where the noise is prevalent.
It has been shown that high-fidelity state control can be achieved even if the noise amplitude is at the same level as the control amplitude.
arXiv Detail & Related papers (2022-06-29T06:30:35Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Quantum parameter estimation in a dissipative environment [44.23814225750129]
We investigate the performance of quantum parameter estimation based on a qubit probe in a dissipative bosonic environment.
It is found that (i) the non-Markovianity can effectively boost the estimation performance and (ii) the estimation precision can be improved by introducing a perpendicular probe-environment interaction.
arXiv Detail & Related papers (2021-10-15T02:43:24Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.