論文の概要: Anomalous zero-field splitting for hole spin qubits in Si and Ge quantum
dots
- arxiv url: http://arxiv.org/abs/2205.02582v1
- Date: Thu, 5 May 2022 11:45:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 06:30:46.738403
- Title: Anomalous zero-field splitting for hole spin qubits in Si and Ge quantum
dots
- Title(参考訳): siおよびge量子ドットにおけるホールスピン量子ビットの異常ゼロフィールド分割
- Authors: Bence Het\'enyi and Stefano Bosco and Daniel Loss
- Abstract要約: ゼロ磁場におけるスピン三重項状態の異常エネルギー分割は、ゲルマニウム量子ドットにおいて測定されている。
このゼロフィールド分割は、トンネル結合量子ドット間の結合を著しく変える可能性がある。
我々は、運動量で立方体であるゼロフィールド分割とスピン軌道相互作用をリンクする解析モデルを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An anomalous energy splitting of spin triplet states at zero magnetic field
has recently been measured in germanium quantum dots. This zero-field splitting
could crucially alter the coupling between tunnel-coupled quantum dots, the
basic building blocks of state-of-the-art spin-based quantum processors, with
profound implications for semiconducting quantum computers. We develop an
analytical model linking the zero-field splitting to spin-orbit interactions
that are cubic in momentum. Such interactions naturally emerge in hole
nanostructures, where they can also be tuned by external electric fields, and
we find them to be particularly large in silicon and germanium, resulting in a
significant zero-field splitting in the $\mu$eV range. We confirm our
analytical theory by numerical simulations of different quantum dots, also
including other possible sources of zero-field splitting. Our findings are
applicable to a broad range of current architectures encoding spin qubits and
provide a deeper understanding of these materials, paving the way towards the
next generation of semiconducting quantum processors.
- Abstract(参考訳): ゼロ磁場におけるスピン三重項状態の異常エネルギー分割は、近年ゲルマニウム量子ドットで測定されている。
このゼロフィールド分割は、最先端のスピンベースの量子プロセッサの基本的な構成要素であるトンネル結合量子ドット間の結合を決定的に変化させる可能性がある。
運動量に立方晶なスピン軌道相互作用とゼロフィールド分割をつなぐ解析モデルを開発した。
このような相互作用は、外部の電場によって調整できる穴ナノ構造に自然に現れ、シリコンやゲルマニウムでは特に大きいことが分かり、その結果、$\mu$eVの範囲で大きなゼロフィールド分裂が起こる。
我々は、異なる量子ドットの数値シミュレーションにより解析理論を検証し、その他のゼロフィールド分裂の原因も含む。
我々の発見はスピン量子ビットを符号化する幅広い現在のアーキテクチャに適用でき、これらの材料をより深く理解し、次世代の半導体量子プロセッサへの道を開いた。
関連論文リスト
- Quantum Entanglement in a Diluted Magnetic Semiconductor Quantum Dot [0.0]
量子技術にとって重要な希薄磁性半導体量子ドットの絡み合いについて検討する。
我々の分析は波動関数の定義、密度行列演算子の利用、絡み合いのエントロピーの測定を含む。
数値的な評価では、大きな絡み合いを示す様々な量子ドットの組み合わせのうち、いくつかの有望なペアが示される。
論文 参考訳(メタデータ) (2024-03-11T08:57:10Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
長距離および異方性相互作用は、量子力学的多体系における豊富な空間構造を促進する。
我々は,光学格子における長距離双極子相互作用を用いて,新しい相関量子相を実現できることを示す。
この研究は、長距離および異方性相互作用を持つ幅広い格子モデルの量子シミュレーションへの扉を開く。
論文 参考訳(メタデータ) (2023-06-01T16:49:20Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
遠い粒子間の量子相関は、量子力学の誕生以来謎のままである。
箱の中の2つの相互作用する粒子の最も単純な1次元のセットアップにおいて、新しい種類の有界量子状態を予測する。
このような状態は導波路量子電磁力学プラットフォームで実現できる。
論文 参考訳(メタデータ) (2023-03-17T09:27:02Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
シリコン金属酸化物半導体(SiMOS)量子ドットスピンキュービットの小型化と優れた積分性は、大量製造可能なスケールアップ量子プロセッサにとって魅力的なシステムである。
本稿では, 量子ドットの電荷とスピン特性について検討し, 量子ビットカップラとしての役割を期待する。
論文 参考訳(メタデータ) (2022-08-08T12:24:46Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
量子計算を用いて,Nニュートリノ系のコヒーレントな集団振動を2成分近似でシミュレートする手法について検討した。
第2次トロッタースズキ公式を用いたゲート複雑性は,量子信号処理などの他の分解方法よりも,システムサイズに優れることがわかった。
論文 参考訳(メタデータ) (2022-07-07T09:39:40Z) - Quantum Dots / Spin Qubits [0.0]
半導体量子ドットにおけるスピン量子ビットは、量子コンピュータを構築するために、固体量子ビットの顕著なファミリーを表す。
最も単純なスピン量子ビットは、量子ドットに位置する単一の電子スピンである。
スピン量子ビットは半導体環境のために複雑な効果を経験する。
論文 参考訳(メタデータ) (2022-04-08T19:21:19Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
コールド原子量子シミュレータにおける工学的な長距離相互作用は、エキゾチックな量子多体挙動を引き起こす。
そこで本研究では,現在実験プラットフォームで利用可能ないくつかのチューニングノブを提案する。
論文 参考訳(メタデータ) (2022-03-31T13:32:12Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
ローレンツブースト下での真の多粒子絡みと量子コヒーレンスの両方の挙動を解析する。
これらの量子資源の与えられた組み合わせはローレンツ不変量を形成する。
論文 参考訳(メタデータ) (2021-11-26T17:22:59Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
固体中の核スピンは環境に弱く結合し、量子情報処理と慣性センシングの魅力的な候補となる。
我々は、原子核スピンコヒーレンス時間よりも高速で1,kHzで物理的に回転するダイヤモンド中の光核スピン偏光と原子核スピンの高速量子制御を実証した。
我々の研究は、それまで到達不可能だったNV核スピンの自由を解放し、量子制御と回転センシングに対する新しいアプローチを解き放つ。
論文 参考訳(メタデータ) (2021-07-27T03:39:36Z) - Spin shuttling in a silicon double quantum dot [0.0]
2つの量子ドット間のスピンシャットリングの最小バージョンについて検討する。
不均一磁場におけるスピン軌道相互作用とゼーマン効果はスピンシャットリングにおいて重要な役割を果たす。
スピン不忠実度は1-F_slesssim 0.002$で、比較的高速なレベル速度は$alpha = 600, mu$eV/nsである。
論文 参考訳(メタデータ) (2020-07-07T16:33:06Z) - The germanium quantum information route [2.449694738547425]
我々は,低次元ゲルマニウム構造における孔の物理を理論的観点から考察する。
我々はゲルマニウム系平面ヘテロ構造とナノワイヤを支える材料科学の進歩について検討する。
我々は、スケーラブルな量子情報処理への最も有望な展望を特定することで結論付ける。
論文 参考訳(メタデータ) (2020-04-17T09:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。