論文の概要: Towards Computationally Feasible Deep Active Learning
- arxiv url: http://arxiv.org/abs/2205.03598v1
- Date: Sat, 7 May 2022 08:47:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-10 14:13:48.177352
- Title: Towards Computationally Feasible Deep Active Learning
- Title(参考訳): 計算可能深層アクティブラーニングに向けて
- Authors: Akim Tsvigun, Artem Shelmanov, Gleb Kuzmin, Leonid Sanochkin, Daniil
Larionov, Gleb Gusev, Manvel Avetisian, Leonid Zhukov
- Abstract要約: アクティブラーニング(AL)は、機械学習モデルのトレーニングに必要なアノテーションの労力を減らすための重要なテクニックである。
ディープラーニングは、実際にALをデプロイする上で不可欠ないくつかの障害に対して解決策を提供するが、他にも多くのものを導入する。
提案アルゴリズムは,より小型で高速な取得モデルであるにもかかわらず,より表現力のある後継モデルを高い性能で訓練できることを示す。
- 参考スコア(独自算出の注目度): 4.352935908127189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning (AL) is a prominent technique for reducing the annotation
effort required for training machine learning models. Deep learning offers a
solution for several essential obstacles to deploying AL in practice but
introduces many others. One of such problems is the excessive computational
resources required to train an acquisition model and estimate its uncertainty
on instances in the unlabeled pool. We propose two techniques that tackle this
issue for text classification and tagging tasks, offering a substantial
reduction of AL iteration duration and the computational overhead introduced by
deep acquisition models in AL. We also demonstrate that our algorithm that
leverages pseudo-labeling and distilled models overcomes one of the essential
obstacles revealed previously in the literature. Namely, it was shown that due
to differences between an acquisition model used to select instances during AL
and a successor model trained on the labeled data, the benefits of AL can
diminish. We show that our algorithm, despite using a smaller and faster
acquisition model, is capable of training a more expressive successor model
with higher performance.
- Abstract(参考訳): アクティブラーニング(AL)は、機械学習モデルのトレーニングに必要なアノテーションの労力を減らすための重要なテクニックである。
ディープラーニングは、alを実際にデプロイするためのいくつかの重要な障害に対するソリューションを提供するが、その他多数を紹介している。
そのような問題の1つは、取得モデルをトレーニングし、ラベルなしプールのインスタンスで不確実性を見積もるために必要な過剰な計算リソースである。
本研究は,テキスト分類とタグ付けタスクにおいてこの問題に取り組む2つの手法を提案し,alにおけるal反復時間と深層獲得モデルによる計算オーバーヘッドを大幅に削減する。
また, 疑似ラベルモデルと蒸留モデルを用いたアルゴリズムは, 文献で指摘されていた本質的障害を克服することを示した。
すなわち、alのインスタンス選択に使用される取得モデルとラベル付きデータに基づいてトレーニングされた後継モデルの違いにより、alのメリットが低下することが示された。
提案アルゴリズムは,より小型で高速な取得モデルであるにもかかわらず,より表現力のある後継モデルを高い性能で訓練できることを示す。
関連論文リスト
- LPLgrad: Optimizing Active Learning Through Gradient Norm Sample Selection and Auxiliary Model Training [2.762397703396293]
LPLgrad(Loss Prediction Loss with Gradient Norm)は、モデルの不確実性を効果的に定量化し、画像分類タスクの精度を向上させる。
LPLgradは2つの異なるフェーズで動作する: (i) Em Training Phaseは、メインモデルと補助モデルとを併用して入力特徴の損失を予測することを目的としている。
この二重モデルアプローチは、複雑な入力特徴を抽出し、データから本質的なパターンを効果的に学習する能力を高める。
論文 参考訳(メタデータ) (2024-11-20T18:12:59Z) - Provable unlearning in topic modeling and downstream tasks [36.571324268874264]
アンラーニングの保証は、しばしば教師付き学習設定に限られる。
我々は、事前学習と微調整のパラダイムにおいて、初となるアンラーニングの理論的保証を提供する。
我々は、特定のタスクに微調整されたモデルから事前学習データを容易に解放できることを示し、ベースモデルを変更することなく、このデータを解放できることを示した。
論文 参考訳(メタデータ) (2024-11-19T16:04:31Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
学びの鍵となる課題は、モデルのパフォーマンスを保ちながら、必要なデータをタイムリーに忘れることである。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Unlearnable Algorithms for In-context Learning [36.895152458323764]
本稿では,事前訓練された大規模言語モデルのタスク適応フェーズに対する効率的なアンラーニング手法に着目した。
タスク適応のための文脈内学習を行うLLMの能力は、タスク適応トレーニングデータの効率的なアンラーニングを可能にする。
本稿では,様々な推論コストを考慮に入れた非学習コストの包括的尺度を提案する。
論文 参考訳(メタデータ) (2024-02-01T16:43:04Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
最近のデータ規制要件に応えて、マシン・アンラーニング(MU)が重要なプロセスとして登場した。
本研究は,ウェイトプルーニングによるモデルスペーシフィケーションという,新しいモデルベース視点を紹介する。
理論と実践の両方において、モデルスパーシティは、近似アンラーナーのマルチ基準アンラーニング性能を高めることができることを示す。
論文 参考訳(メタデータ) (2023-04-11T02:12:02Z) - Active Learning for Abstractive Text Summarization [50.79416783266641]
本稿では,抽象テキスト要約におけるアクティブラーニングのための最初の効果的なクエリ戦略を提案する。
ALアノテーションにおける私たちの戦略は、ROUGEと一貫性スコアの点からモデル性能を向上させるのに役立ちます。
論文 参考訳(メタデータ) (2023-01-09T10:33:14Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Outlier-Robust Learning of Ising Models Under Dobrushin's Condition [57.89518300699042]
本研究では, サンプルの一定割合が逆向きに破壊されるような外乱条件下で, ドブルシンの条件を満たすIsingモデルの学習問題について検討する。
我々の主な成果は、ほぼ最適誤差保証を伴うこの問題に対して、計算効率のよい最初の頑健な学習アルゴリズムを提供することである。
論文 参考訳(メタデータ) (2021-02-03T18:00:57Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。