論文の概要: DxFormer: A Decoupled Automatic Diagnostic System Based on
Decoder-Encoder Transformer with Dense Symptom Representations
- arxiv url: http://arxiv.org/abs/2205.03755v1
- Date: Sun, 8 May 2022 01:52:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-10 15:05:35.072365
- Title: DxFormer: A Decoupled Automatic Diagnostic System Based on
Decoder-Encoder Transformer with Dense Symptom Representations
- Title(参考訳): DxFormer:デコーダ・エンコーダ変換器を用いたディカップリング型自動診断システム
- Authors: Wei Chen, Cheng Zhong, Jiajie Peng, Zhongyu Wei
- Abstract要約: 診断指向対話システムは患者の健康状態を照会し、患者との継続的な対話を通じて疾患の予測を行う。
本稿では,診断プロセスを症状調査と疾患診断の2つの段階に分割する,分離された自動診断フレームワークDxFormerを提案する。
提案モデルは,医師の臨床経験を効果的に学習し,症状のリコールと診断精度の点で最先端の結果を得ることができる。
- 参考スコア(独自算出の注目度): 26.337392652262103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagnosis-oriented dialogue system queries the patient's health condition and
makes predictions about possible diseases through continuous interaction with
the patient. A few studies use reinforcement learning (RL) to learn the optimal
policy from the joint action space of symptoms and diseases. However, existing
RL (or Non-RL) methods cannot achieve sufficiently good prediction accuracy,
still far from its upper limit. To address the problem, we propose a decoupled
automatic diagnostic framework DxFormer, which divides the diagnosis process
into two steps: symptom inquiry and disease diagnosis, where the transition
from symptom inquiry to disease diagnosis is explicitly determined by the
stopping criteria. In DxFormer, we treat each symptom as a token, and formalize
the symptom inquiry and disease diagnosis to a language generation model and a
sequence classification model respectively. We use the inverted version of
Transformer, i.e., the decoder-encoder structure, to learn the representation
of symptoms by jointly optimizing the reinforce reward and cross entropy loss.
Extensive experiments on three public real-world datasets prove that our
proposed model can effectively learn doctors' clinical experience and achieve
the state-of-the-art results in terms of symptom recall and diagnostic
accuracy.
- Abstract(参考訳): 診断指向の対話システムは患者の健康状態を問い合わせ、患者との継続的な対話を通じて疾患の予測を行う。
いくつかの研究は強化学習(rl)を使用して、症状と疾患の合同行動空間から最適な方針を学ぶ。
しかし、既存のRL(Non-RL)法は、その上限から遠く離れたところで十分な予測精度を達成できない。
そこで本研究では,症状問診から疾患診断への移行が停止基準によって明確に決定される症状問診と疾患診断の2つのステップに分類する,分離型自動診断フレームワークdxformerを提案する。
dxformerでは,各症状をトークンとして扱い,言語生成モデルとシーケンス分類モデルに対して,症状問診と疾患診断を形式化する。
我々は,インバータ型トランスフォーマ,すなわちデコーダエンコーダ構造を用いて,強化報酬とクロスエントロピー損失を共同で最適化し,症状の表現を学習する。
3つの実世界のデータセットに関する広範囲な実験により,提案モデルが医師の臨床経験を効果的に学習し,症状のリコールと診断精度の観点から最先端の結果が得られることを証明した。
関連論文リスト
- DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - CoAD: Automatic Diagnosis through Symptom and Disease Collaborative
Generation [37.25451059168202]
CoADは病気と症状の協調生成フレームワークである。
自動的な疾患診断を改善するために、いくつかの重要な革新が組み込まれている。
過去の診断結果よりも平均2.3%改善している。
論文 参考訳(メタデータ) (2023-07-17T07:24:55Z) - OpenClinicalAI: An Open and Dynamic Model for Alzheimer's Disease
Diagnosis [11.775648630734949]
アルツハイマー病(AD)は逆転や治癒はできないが、タイムリーな診断は治療やケアの負担を大幅に軽減することができる。
AD診断モデルに関する現在の研究は、診断タスクを典型的な分類タスクと見なしている。
複雑で不確実な臨床環境下での直接AD診断のためのOpenClinicalAIを提案する。
論文 参考訳(メタデータ) (2023-07-03T12:35:03Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
医療のアドバイスをオンラインで求めている人にとっては、患者と対話して自動的に疾患を診断できるAIベースの対話エージェントが有効な選択肢だ。
これは、強化学習(RL)アプローチを自然解として提案した逐次的特徴(症状)選択と分類の問題として定式化することができる。
生成的アクターネットワークと診断批評家ネットワークから構成されるMMF-AC(Multi-Model-Fused Actor-Critic)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T03:06:16Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
症状検査システムは、患者に症状を問い合わせ、迅速で手頃な価格の医療評価を行う。
本稿では,論理正則化を用いたニューラルネットワークの教師付き学習に基づく新しい手法を提案する。
以上の結果から,本手法は診断回数や症状が大きい場合の診断精度において,最も優れた方法であることがわかった。
論文 参考訳(メタデータ) (2022-06-02T07:57:17Z) - DDXPlus: A new Dataset for Medical Automatic Diagnosis [2.7126836481535213]
本研究は, 患者ごとの鑑別診断, 基礎的真理病理学を含む大規模合成データセットを提案する。
概念実証として,既存のADおよびASDシステムを拡張し,鑑別診断を取り入れた。
我々は,これらのシステムにおいて,差分を訓練信号に用いて差分を予測することが不可欠であることを示す経験的証拠を提供する。
論文 参考訳(メタデータ) (2022-05-18T18:03:39Z) - Diaformer: Automatic Diagnosis via Symptoms Sequence Generation [14.90347470039301]
変換器(ダイアフォーマ)に基づく簡易かつ効果的な自動診断モデルを提案する。
まず,症状調査と疾患診断の創出を学ぶために,症状注意枠組みを設計する。
3つの公開データセットの実験により、我々のモデルは、トレーニング効率が最も高い1%、6%、11.5%で疾患診断のベースラインを上回ります。
論文 参考訳(メタデータ) (2021-12-20T10:26:59Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
政策学習のための対話システムに2段階の階層的な政策構造を統合することを提案する。
提案した政策構造は,多くの疾患や症状を含む診断問題に対処することができる。
論文 参考訳(メタデータ) (2020-04-29T15:02:41Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
医学診断アシスタント(MDA)は、疾患を識別するための症状を逐次調査する対話型診断エージェントを構築することを目的としている。
この研究は、因果図を利用して、MDAにおけるこれらの重要な問題に対処しようとする。
本稿では,他の記録から知識を引き出すことにより,非記録的調査に効果的に答える確率に基づく患者シミュレータを提案する。
論文 参考訳(メタデータ) (2020-03-14T02:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。