論文の概要: A Dataset and BERT-based Models for Targeted Sentiment Analysis on
Turkish Texts
- arxiv url: http://arxiv.org/abs/2205.04185v1
- Date: Mon, 9 May 2022 10:57:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-10 19:40:02.313738
- Title: A Dataset and BERT-based Models for Targeted Sentiment Analysis on
Turkish Texts
- Title(参考訳): トルコ語テキストのターゲット感分析のためのデータセットとBERTに基づくモデル
- Authors: M. Melih Mutlu, Arzucan \"Ozg\"ur
- Abstract要約: 対象感情分析に適した注釈付きトルコ語データセットを提案する。
目標感情分析の課題を達成するために,異なるアーキテクチャのBERTモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Targeted Sentiment Analysis aims to extract sentiment towards a particular
target from a given text. It is a field that is attracting attention due to the
increasing accessibility of the Internet, which leads people to generate an
enormous amount of data. Sentiment analysis, which in general requires
annotated data for training, is a well-researched area for widely studied
languages such as English. For low-resource languages such as Turkish, there is
a lack of such annotated data. We present an annotated Turkish dataset suitable
for targeted sentiment analysis. We also propose BERT-based models with
different architectures to accomplish the task of targeted sentiment analysis.
The results demonstrate that the proposed models outperform the traditional
sentiment analysis models for the targeted sentiment analysis task.
- Abstract(参考訳): Targeted Sentiment Analysisは、あるテキストから特定のターゲットに対する感情を抽出することを目的としている。
インターネットのアクセシビリティの増大によって注目を集めている分野であり、膨大な量のデータを生成することができる。
感覚分析は、一般的にトレーニングのために注釈付きデータを必要とするが、英語などの広く研究されている言語にとって、よく研究されている分野である。
トルコ語のような低リソース言語では、アノテーション付きデータが不足している。
対象感情分析に適した注釈付きトルコ語データセットを提案する。
また,目標感情分析の課題を達成するために,異なるアーキテクチャのBERTモデルを提案する。
その結果,提案モデルが従来の感情分析モデルよりも優れていることがわかった。
関連論文リスト
- Text2Analysis: A Benchmark of Table Question Answering with Advanced
Data Analysis and Unclear Queries [67.0083902913112]
高度な解析タスクを取り入れたText2Analysisベンチマークを開発した。
また,5つのイノベーティブかつ効果的なアノテーション手法を開発した。
3つの異なる指標を用いて5つの最先端モデルを評価する。
論文 参考訳(メタデータ) (2023-12-21T08:50:41Z) - SOUL: Towards Sentiment and Opinion Understanding of Language [96.74878032417054]
我々は、言語感覚とオピニオン理解(SOUL)と呼ばれる新しいタスクを提案する。
SOULは2つのサブタスクを通して感情理解を評価することを目的としている:レビュー(RC)と正当化生成(JG)。
論文 参考訳(メタデータ) (2023-10-27T06:48:48Z) - Robust Sentiment Analysis for Low Resource languages Using Data
Augmentation Approaches: A Case Study in Marathi [0.9553673944187253]
感情分析は、テキストデータに表される感情を理解する上で重要な役割を果たす。
低リソース言語における感情分析の研究努力には大きなギャップがある。
本稿では,低リソースのIndic言語であるMarathiに対するデータ拡張アプローチについて概説する。
論文 参考訳(メタデータ) (2023-10-01T17:09:31Z) - Constructing Colloquial Dataset for Persian Sentiment Analysis of Social
Microblogs [0.0]
本稿ではまず,ITRC-Opinionというユーザ意見データセットを協調的かつインソース的に構築する。
私たちのデータセットには、TwitterやInstagramといったソーシャルなマイクロブログから、6万の非公式で口語的なペルシア語のテキストが含まれています。
次に,畳み込みニューラルネットワーク(CNN)モデルに基づく新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-22T05:51:22Z) - How to Solve Few-Shot Abusive Content Detection Using the Data We Actually Have [58.23138483086277]
この作業では、すでに持っているデータセットを活用し、虐待的な言語検出に関連する幅広いタスクをカバーしています。
私たちのゴールは、ターゲットドメインのトレーニング例を少しだけ使用して、新しいターゲットラベルセットや/または言語のために、安価にモデルを構築することです。
実験の結果、すでに存在するデータセットと、対象タスクのほんの数ショットしか使用していないモデルの性能が、モノリンガル言語と言語間で改善されていることがわかった。
論文 参考訳(メタデータ) (2023-05-23T14:04:12Z) - Transfer Learning for Low-Resource Sentiment Analysis [1.2891210250935146]
本稿では,中央クルド人の感情分析のためのデータセットの収集とアノテーションについて述べる。
このタスクのために、古典的な機械学習とニューラルネットワークベースのテクニックをいくつか探求する。
論文 参考訳(メタデータ) (2023-04-10T16:44:44Z) - Contextual information integration for stance detection via
cross-attention [59.662413798388485]
スタンス検出は、著者の目標に対する姿勢を特定することを扱う。
既存のスタンス検出モデルの多くは、関連するコンテキスト情報を考慮していないため、制限されている。
文脈情報をテキストとして統合する手法を提案する。
論文 参考訳(メタデータ) (2022-11-03T15:04:29Z) - FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation [64.9546787488337]
本稿では、Few-shot Region-aware Machine Translationのための新しいデータセットと評価ベンチマークFRMTを提案する。
このデータセットは、英語からポルトガル語と中国語の2つの地域変種へのプロの翻訳で構成されている。
論文 参考訳(メタデータ) (2022-10-01T05:02:04Z) - Aspect-Based Sentiment Analysis using Local Context Focus Mechanism with
DeBERTa [23.00810941211685]
Aspect-Based Sentiment Analysis (ABSA)は、感情分析の分野におけるきめ細かいタスクである。
アスペクトベース感性分析問題を解決するための最近のDeBERTaモデル
論文 参考訳(メタデータ) (2022-07-06T03:50:31Z) - Sentiment Analysis on Brazilian Portuguese User Reviews [0.0]
本研究は,システム結果の極性を仮定して,文書埋め込み戦略の予測性能を解析する。
この分析には、単一のデータセットに統合されたブラジルの5つの感情分析データセットと、トレーニング、テスト、バリデーションセットの参照パーティショニングが含まれている。
論文 参考訳(メタデータ) (2021-12-10T11:18:26Z) - DomBERT: Domain-oriented Language Model for Aspect-based Sentiment
Analysis [71.40586258509394]
本研究では、ドメイン内コーパスと関連するドメインコーパスの両方から学習するためのBERTの拡張であるDomBERTを提案する。
アスペクトベース感情分析における課題の整理実験を行い、有望な結果を示す。
論文 参考訳(メタデータ) (2020-04-28T21:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。