論文の概要: Generation of non-stationary stochastic fields using Generative
Adversarial Networks with limited training data
- arxiv url: http://arxiv.org/abs/2205.05469v1
- Date: Wed, 11 May 2022 13:09:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 20:05:17.875668
- Title: Generation of non-stationary stochastic fields using Generative
Adversarial Networks with limited training data
- Title(参考訳): 訓練データ制限のある生成型逆ネットワークを用いた非定常確率場の生成
- Authors: Alhasan Abdellatif, Ahmed H. Elsheikh, Daniel Busby, Philippe Berthet
- Abstract要約: 本研究では,地質的なチャネル化パターンのデータセットに対してGAN(Generative Adversarial Networks)モデルをトレーニングする際の問題点について検討する。
空間条件間の相関関係を効果的に学習する訓練法を開発した。
我々のモデルは、目標地図と強く相関して、トレーニングサンプル以外の地質学的に証明可能な実現法を生成することができた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of generating geological facies conditioned on observed data,
samples corresponding to all possible conditions are not generally available in
the training set and hence the generation of these realizations depends primary
on the generalization capability of the trained generative model. The problem
becomes more complex when applied on non-stationary fields. In this work, we
investigate the problem of training Generative Adversarial Networks (GANs)
models against a dataset of geological channelized patterns that has a few
non-stationary spatial modes and examine the training and self-conditioning
settings that improve the generalization capability at new spatial modes that
were never seen in the given training set. The developed training method
allowed for effective learning of the correlation between the spatial
conditions (i.e. non-stationary maps) and the realizations implicitly without
using additional loss terms or solving a costly optimization problem at the
realization generation phase. Our models, trained on real and artificial
datasets were able to generate geologically-plausible realizations beyond the
training samples with a strong correlation with the target maps.
- Abstract(参考訳): 観測データに基づく地質相の生成の文脈では、すべての可能な条件に対応するサンプルはトレーニングセットでは一般に利用できないため、これらの実現は訓練された生成モデルの一般化能力に大きく依存する。
この問題は非定常場に適用するとより複雑になる。
本研究では,非定常的な空間モードを持つ地質学的チャネル化パターンのデータセットに対してGAN(Generative Adversarial Networks)モデルをトレーニングする際の問題点を考察し,与えられたトレーニングセットにない新しい空間モードにおける一般化能力を改善するための訓練と自己条件設定を検討する。
本手法は,空間条件(非定常写像)と実現条件の相関関係を,追加の損失項を使わずに効果的に学習し,実現段階においてコストのかかる最適化問題を解くことを可能にした。
実データと人工データに基づいてトレーニングされた我々のモデルは、ターゲットマップと強い相関を持つトレーニングサンプルを超えて、地質学的に賞賛できる実現を生成できた。
関連論文リスト
- Learning from few examples with nonlinear feature maps [68.8204255655161]
我々はこの現象を探求し、AIモデルの特徴空間の次元性、データ分散の非退化、モデルの一般化能力の間の重要な関係を明らかにする。
本分析の主な推力は、元のデータを高次元および無限次元空間にマッピングする非線形特徴変換が結果のモデル一般化能力に与える影響である。
論文 参考訳(メタデータ) (2022-03-31T10:36:50Z) - Generating unrepresented proportions of geological facies using
Generative Adversarial Networks [0.0]
地質データセットにおける相の補間・補間におけるGAN(Generative Adversarial Networks)の能力について検討した。
具体的には、トレーニングセットに存在しない新しい比率に向けて、生成されたファシズムを駆動できる条件付きGANモデルを設計する。
両相・多重相の画像に対する数値実験は, 良好な地質学的整合性を示し, 対象条件と強い相関を示した。
論文 参考訳(メタデータ) (2022-03-17T22:38:45Z) - Evaluating Generalization in Classical and Quantum Generative Models [68.8204255655161]
我々は、生成モデルの一般化能力を評価するための単純で曖昧なアプローチを構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Smoothing the Generative Latent Space with Mixup-based Distance Learning [32.838539968751924]
我々は、我々の関心の大規模なデータセットも、転送可能なソースデータセットも利用できない状況を考える。
本稿では,ジェネレータとディスクリミネータの両方の特徴空間における遅延混合に基づく距離正規化を提案する。
論文 参考訳(メタデータ) (2021-11-23T06:39:50Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Topologically Regularized Data Embeddings [22.222311627054875]
本稿では,新たにトポロジ的損失の集合を導入し,その利用法を,データ埋め込みを自然に特定したモデルを表現するために,トポロジカルに正規化する方法として提案する。
このアプローチの有用性と汎用性を強調した合成データおよび実データの実験を含む。
論文 参考訳(メタデータ) (2021-10-18T11:25:47Z) - A Procedural World Generation Framework for Systematic Evaluation of
Continual Learning [2.599882743586164]
都会のシーンのフラグメントのみを描画するコンピュータグラフィックスシミュレーションフレームワークを提案する。
中心となるのは、適応可能な生成因子を持つモジュラーパラメトリック生成モデルである。
論文 参考訳(メタデータ) (2021-06-04T16:31:43Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
本研究は、限られたデータ上で堅牢なGANモデルをトレーニングするための正規化手法を提案する。
正規化損失とLeCam-divergenceと呼ばれるf-divergenceの関連性を示す。
論文 参考訳(メタデータ) (2021-04-07T17:59:06Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
ハイパウシティシナリオにおけるデータ分布の学習を容易にする新しいフレームワークを提案する。
提案手法は,不完全データから学習過程を協調最適化タスクとして行うことに由来する。
論文 参考訳(メタデータ) (2021-04-03T20:57:57Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。