論文の概要: Physics-Informed Diffusion Models
- arxiv url: http://arxiv.org/abs/2403.14404v2
- Date: Thu, 23 May 2024 09:34:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-05-25 05:59:52.794707
- Title: Physics-Informed Diffusion Models
- Title(参考訳): 物理インフォームド拡散モデル
- Authors: Jan-Hendrik Bastek, WaiChing Sun, Dennis M. Kochmann,
- Abstract要約: 本稿では,モデル学習中に生成されたサンプルに対して,基礎となる制約の拡散モデルに通知する枠組みを提案する。
提案手法は, 提案した制約付きサンプルのアライメントを改良し, 既存手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models such as denoising diffusion models are quickly advancing their ability to approximate highly complex data distributions. They are also increasingly leveraged in scientific machine learning, where samples from the implied data distribution are expected to adhere to specific governing equations. We present a framework to inform denoising diffusion models of underlying constraints on such generated samples during model training. Our approach improves the alignment of the generated samples with the imposed constraints and significantly outperforms existing methods without affecting inference speed. Additionally, our findings suggest that incorporating such constraints during training provides a natural regularization against overfitting. Our framework is easy to implement and versatile in its applicability for imposing equality and inequality constraints as well as auxiliary optimization objectives.
- Abstract(参考訳): 拡散モデルのような生成モデルは、非常に複雑なデータ分布を近似する能力が急速に進歩している。
科学的な機械学習にも活用され、インプリートされたデータ分布のサンプルは特定の支配方程式に従うことが期待されている。
本稿では,モデル学習中に生成したサンプルに対する基礎的制約について,拡散モデルに通知する枠組みを提案する。
提案手法は, 提案した制約付きサンプルのアライメントを改善し, 推論速度に影響を与えることなく, 既存の手法を著しく上回っている。
さらに,トレーニング中にこのような制約を組み込むことで,過剰適合に対する自然な規則化が期待できる。
我々のフレームワークは、等式制約や不等式制約を課し、補助最適化の目的を課すための適用性において、実装が容易で、多用途である。
関連論文リスト
- Partial Transportability for Domain Generalization [56.37032680901525]
本稿では, 部分的同定と輸送可能性の理論に基づいて, 対象分布の関数値の有界化に関する新たな結果を紹介する。
我々の貢献は、輸送可能性問題に対する最初の一般的な評価手法を提供することである。
本稿では,スケーラブルな推論を実現するための勾配に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2025-03-30T22:06:37Z) - Symmetry-Preserving Diffusion Models via Target Symmetrization [43.83899968118655]
本稿では, 対称性付き損失関数を用いて等価性を強制する新しい手法を提案する。
本手法では,モンテカルロサンプリングを用いて平均値を推定し,計算オーバーヘッドを最小限に抑える。
実験では,既存の方法と比較して試料の品質が向上した。
論文 参考訳(メタデータ) (2025-02-14T03:26:57Z) - Elucidating Flow Matching ODE Dynamics with Respect to Data Geometries [10.947094609205765]
拡散に基づく生成モデルが画像生成の標準となり, 学習ベクトル場によるサンプリングステップの削減により, 拡散モデルと比較して, ODEベースのサンプリングモデルとフローマッチングモデルにより効率が向上した。
我々は,ODE力学を駆動するデノイザを中心に,サンプル軌道の包括的解析を通じて,フローマッチングモデルの理論を推し進める。
解析により,グローバルなデータ特徴から局所構造への軌道の進化が明らかとなり,フローマッチングモデルにおけるサンプルごとの挙動の幾何学的特徴が得られた。
論文 参考訳(メタデータ) (2024-12-25T01:17:15Z) - Learning Structural Causal Models from Ordering: Identifiable Flow Models [19.99352354910655]
本稿では,変数の可逆変換を部品的に再現するフローモデルを提案する。
本稿では,すべての因果メカニズムの同時学習を可能にする設計改善を提案する。
本手法は,既存の拡散法に比べて計算時間を大幅に短縮する。
論文 参考訳(メタデータ) (2024-12-13T04:25:56Z) - Generalized Diffusion Model with Adjusted Offset Noise [1.7767466724342067]
本稿では,厳密な確率的枠組みの中で自然に付加的な雑音を取り入れた一般化拡散モデルを提案する。
我々は、ある調整でノイズを相殺する理論的等価性を確立し、証拠の低い境界に基づいて損失関数を導出する。
合成データセットの実験により、我々のモデルは輝度に関する課題に効果的に対処し、高次元シナリオにおいて従来の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-12-04T08:57:03Z) - Statistical guarantees for denoising reflected diffusion models [1.9116784879310031]
近年,進化するAIの領域が急速に拡大しているため,拡散モデルの認知化が重要な研究領域となっている。
本稿では,反射拡散モデルの統計的保証について検討する。
本研究の主な貢献は, 反射拡散モデルに基づく新しいクラスを統計的に解析することと, 時間と空間の両方における精密なスコア近似法である。
論文 参考訳(メタデータ) (2024-11-03T13:26:35Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - Constraint-Aware Diffusion Models for Trajectory Optimization [9.28162057044835]
本稿では,軌道最適化のための制約対応拡散モデルを提案する。
拡散サンプルの制約違反を最小限に抑える訓練用ハイブリッド損失関数を提案する。
本モデルでは, テーブルトップ操作と2台のリーチ回避問題について検討した。
論文 参考訳(メタデータ) (2024-06-03T04:53:20Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では,条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより,ギャップを埋める。
論文 参考訳(メタデータ) (2024-03-18T17:08:24Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Information-Theoretic Diffusion [18.356162596599436]
拡散モデルのデノイングは密度モデリングや画像生成において大きな進歩をもたらした。
情報理論における古典的な結果にインスパイアされた拡散モデルのための新しい数学的基礎を導入する。
論文 参考訳(メタデータ) (2023-02-07T23:03:07Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
代理モデルを生成するためのモデルベースおよびデータ駆動型戦略を提案する。
後者は、前提となる位相構造に人工的関係を組み込むことで解釈可能な代理モデルを生成する。
我々のフレームワークは、分散パラメータモデルのための様々な空間離散化スキームと互換性がある。
論文 参考訳(メタデータ) (2022-02-02T17:07:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。