論文の概要: Image Segmentation with Topological Priors
- arxiv url: http://arxiv.org/abs/2205.06197v1
- Date: Thu, 12 May 2022 16:36:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-13 16:23:26.249365
- Title: Image Segmentation with Topological Priors
- Title(参考訳): トポロジカル優先による画像分割
- Authors: Shakir Showkat Sofi, Nadezhda Alsahanova
- Abstract要約: トポロジカルな前提によるセグメンテーションタスクの解法は、微細な構造における誤りを少なくすることを示した。
本研究では,深層ニューラルネットワークトレーニングの前後でトポロジカルな事前処理を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving segmentation tasks with topological priors proved to make fewer
errors in fine-scale structures. In this work, we use topological priors both
before and during the deep neural network training procedure. We compared the
results of the two approaches with simple segmentation on various accuracy
metrics and the Betti number error, which is directly related to topological
correctness, and discovered that incorporating topological information into the
classical UNet model performed significantly better. We conducted experiments
on the ISBI EM segmentation dataset.
- Abstract(参考訳): トポロジカルな前提によるセグメンテーションタスクの解法は、微細な構造における誤りを少なくすることを示した。
本研究では,深層ニューラルネットワークトレーニングの前後でトポロジカルな事前処理を行う。
従来のUNetモデルにトポロジ的情報を組み込むことにより, トポロジ的正確性に直接関係するベッチ数誤差と, 様々な精度の指標を単純なセグメンテーションで比較したところ, トポロジ的情報の導入が有意に向上していることが判明した。
我々はISBI EMセグメンテーションデータセットの実験を行った。
- 全文 参考訳へのリンク
関連論文リスト
- End-to-end Neuron Instance Segmentation based on Weakly Supervised
Efficient UNet and Morphological Post-processing [0.0]
組織像からNeuN染色神経細胞を自動的に検出し,分画するエンド・ツー・エンド・エンド・エンド型のフレームワークを提案する。
私たちは最先端のネットワークであるEfficientNetをU-Netのようなアーキテクチャに統合します。
論文 参考訳(メタデータ) (2022-02-17T14:35:45Z) - TA-Net: Topology-Aware Network for Gland Segmentation [71.52681611057271]
本研究では, 密集した腺と高度に変形した腺を正確に分離する新しいトポロジ・アウェア・ネットワーク(TA-Net)を提案する。
TA-Netはマルチタスク学習アーキテクチャを持ち、腺セグメンテーションの一般化を強化する。
2つのデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-10-27T17:10:58Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Learning to Learn Graph Topologies [27.782971146122218]
ノードデータからグラフ構造へのマッピングを学習する(L2O)。
このモデルは、ノードデータとグラフサンプルのペアを使ってエンドツーエンドでトレーニングされる。
合成データと実世界のデータの両方の実験により、我々のモデルは、特定のトポロジ特性を持つグラフを学習する際の古典的反復アルゴリズムよりも効率的であることが示された。
論文 参考訳(メタデータ) (2021-10-19T08:42:38Z) - Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning [81.1071978288003]
特に,情報理論の原理を用いて,反復型SSLアルゴリズムのエミュレータ一般化誤差の振る舞いを理解することを目的とする。
我々の理論的結果は、クラス条件分散があまり大きくない場合、一般化誤差の上限は反復数とともに単調に減少するが、すぐに飽和することを示している。
論文 参考訳(メタデータ) (2021-10-03T05:38:49Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Topological Similarity Index and Loss Function for Blood Vessel
Segmentation [0.0]
そこで本研究では,予測されたセグメントの一貫性を基礎的真理に言及した類似度指数を提案する。
また、形態的閉鎖演算子に基づく新しい損失関数を設計し、より位相的に一貫性のあるマスクを生成するディープニューラルネットワークモデルを学習する方法を示す。
論文 参考訳(メタデータ) (2021-07-30T10:24:47Z) - Semi-supervised, Topology-Aware Segmentation of Tubular Structures from
Live Imaging 3D Microscopy [6.2651370198971295]
本稿では, バイオメディカルイメージングにおける2つの問題に対処する: セグメンテーションのトポロジ的一貫性, 限定アノテーション。
本研究では, 予測された真理セグメントと地上の真理セグメントの位相的および幾何学的整合性を測定するトポロジカルスコアを提案する。
本研究は, 乳房内管状構造を集束顕微鏡で観察し, 本研究の意義を検証した。
論文 参考訳(メタデータ) (2021-05-20T13:35:44Z) - Topology-Aware Segmentation Using Discrete Morse Theory [38.65353702366932]
深部画像セグメンテーションネットワークを訓練し、位相精度を向上させる新しい手法を提案する。
1次元骨格や2次元パッチなど,位相的精度に重要なグローバル構造を明らかにする。
多様なデータセットに対して,DICEスコアとトポロジカルメトリクスの両方で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-18T02:47:21Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。