Deep Learning for Prawn Farming: Forecasting and Anomaly Detection
- URL: http://arxiv.org/abs/2205.06359v1
- Date: Thu, 12 May 2022 20:52:30 GMT
- Title: Deep Learning for Prawn Farming: Forecasting and Anomaly Detection
- Authors: Joel Janek Dabrowski, Ashfaqur Rahman, Andrew Hellicar, Mashud Rana,
Stuart Arnold
- Abstract summary: We present a decision support system for managing water quality in prawn ponds.
The system uses various sources of data and deep learning models in a novel way to provide 24-hour forecasting and anomaly detection of water quality parameters.
- Score: 1.7324358447544173
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a decision support system for managing water quality in prawn
ponds. The system uses various sources of data and deep learning models in a
novel way to provide 24-hour forecasting and anomaly detection of water quality
parameters. It provides prawn farmers with tools to proactively avoid a poor
growing environment, thereby optimising growth and reducing the risk of losing
stock. This is a major shift for farmers who are forced to manage ponds by
reactively correcting poor water quality conditions. To our knowledge, we are
the first to apply Transformer as an anomaly detection model, and the first to
apply anomaly detection in general to this aquaculture problem. Our technical
contributions include adapting ForecastNet for multivariate data and adapting
Transformer and the Attention model to incorporate weather forecast data into
their decoders. We attain an average mean absolute percentage error of 12% for
dissolved oxygen forecasts and we demonstrate two anomaly detection case
studies. The system is successfully running in its second year of deployment on
a commercial prawn farm.
Related papers
- WaterQualityNeT: Prediction of Seasonal Water Quality of Nepal Using Hybrid Deep Learning Models [0.0]
This paper presents a hybrid deep learning model for predicting Nepal's seasonal water quality using a small dataset.
The model integrates convolutional neural networks (CNN) and recurrent neural networks (RNN) to exploit temporal and spatial patterns in the data.
arXiv Detail & Related papers (2024-09-17T05:26:59Z) - Deep Reinforcement Multi-agent Learning framework for Information
Gathering with Local Gaussian Processes for Water Monitoring [3.2266662249755025]
It is proposed to use Local Gaussian Processes and Deep Reinforcement Learning to jointly obtain effective monitoring policies.
A Deep convolutional policy is proposed, that bases the decisions on the observation on the mean and variance of this model.
Using a Double Deep Q-Learning algorithm, agents are trained to minimize the estimation error in a safe manner.
arXiv Detail & Related papers (2024-01-09T15:58:15Z) - Monitoring water contaminants in coastal areas through ML algorithms
leveraging atmospherically corrected Sentinel-2 data [3.155658695525581]
This study pioneers a novel approach to monitor the Turbidity contaminant, integrating CatBoost Machine Learning (ML) with high-resolution data from Sentinel-2 Level-2A.
Traditional methods are labor-intensive while CatBoost offers an efficient solution, excelling in predictive accuracy.
Leveraging atmospherically corrected Sentinel-2 data through the Google Earth Engine (GEE), our study contributes to scalable and precise Turbidity monitoring.
arXiv Detail & Related papers (2024-01-08T10:20:34Z) - Beyond Tides and Time: Machine Learning Triumph in Water Quality [0.0]
This study aims to establish a robust predictive pipeline to both data science experts and those without domain specific knowledge.
Our research aims to establish a robust predictive pipeline to both data science experts and those without domain specific knowledge.
arXiv Detail & Related papers (2023-09-29T03:33:53Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Predictive Analytics for Water Asset Management: Machine Learning and
Survival Analysis [55.41644538483948]
We study a statistical and machine learning framework for the prediction of water pipe failures.
We use a dataset containing the failure records of all pipes within the water distribution network in Barcelona, Spain.
The results shed light on the effect of important risk factors, such as pipe geometry, age, material, and soil cover, among others.
arXiv Detail & Related papers (2020-07-02T19:08:36Z) - A multivariate water quality parameter prediction model using recurrent
neural network [0.30458514384586394]
This research is to develop a water quality prediction model based on water quality parameters.
The model was developed using a recurrent neural network (RNN), Long Short-Term Memory (LSTM) and historical water quality data.
The single step model attained an error of 0.01 mg/L, whilst the multiple step model achieved a Root Mean Squared Error (RMSE) of 0.227 mg/L.
arXiv Detail & Related papers (2020-03-25T16:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.