論文の概要: Learning quantum graph states with product measurements
- arxiv url: http://arxiv.org/abs/2205.06432v1
- Date: Fri, 13 May 2022 02:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 07:08:29.329180
- Title: Learning quantum graph states with product measurements
- Title(参考訳): 製品計測による量子グラフ状態の学習
- Authors: Yingkai Ouyang and Marco Tomamichel
- Abstract要約: 我々は、未知の$n$-qubit量子グラフ状態の同一コピーを製品測定で学習する問題を考察する。
このようなグラフ状態の複数の同一コピー上で製品計測を用いて学習する明示的なアルゴリズムを詳述する。
- 参考スコア(独自算出の注目度): 22.463154358632472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of learning $N$ identical copies of an unknown
$n$-qubit quantum graph state with product measurements. These graph states
have corresponding graphs where every vertex has exactly $d$ neighboring
vertices. Here, we detail an explicit algorithm that uses product measurements
on multiple identical copies of such graph states to learn them. When $n \gg d$
and $N = O(d \log(1/\epsilon) + d^2 \log n ),$ this algorithm correctly learns
the graph state with probability at least $1- \epsilon$. From channel coding
theory, we find that for arbitrary joint measurements on graph states, any
learning algorithm achieving this accuracy requires at least $\Omega(\log
(1/\epsilon) + d \log n)$ copies when $d=o(\sqrt n)$. We also supply bounds on
$N$ when every graph state encounters identical and independent depolarizing
errors on each qubit.
- Abstract(参考訳): 我々は、未知の$n$-qubit量子グラフ状態の同一コピーを製品測定で学習する問題を考察する。
これらのグラフ状態は対応するグラフを持ち、すべての頂点はちょうど$d$隣接頂点を持つ。
本稿では、これらのグラフ状態の複数の同一コピー上で製品計測を用いて学習する明示的なアルゴリズムについて詳述する。
$n \gg d$ と $N = O(d \log(1/\epsilon) + d^2 \log n ) のとき、$ は確率 1- \epsilon$ のグラフ状態を正しく学習する。
チャネル符号化理論から、グラフ状態上の任意の関節測定において、この精度を達成する学習アルゴリズムには少なくとも$\Omega(\log (1/\epsilon) + d \log n)$ copy if $d=o(\sqrt n)$ が必要であることが分かる。
また、各グラフ状態が各キュービット上で同一かつ独立な非分極誤差に遭遇した場合、$N$のバウンダリも提供します。
関連論文リスト
- Implementation of Continuous-Time Quantum Walk on Sparse Graph [0.0]
連続時間量子ウォーク(CTQW)は、量子コンピューティングにおいて重要な役割を果たす。
CTQWを効率的に実装する方法は難しい問題である。
本稿では,スパースグラフ上でのCTQWの実装について検討する。
論文 参考訳(メタデータ) (2024-08-20T05:20:55Z) - Graph Unfolding and Sampling for Transitory Video Summarization via Gershgorin Disc Alignment [48.137527345353625]
携帯電話からYouTubeやTikTokなどのソーシャルメディアサイトにアップロードされたユーザー生成ビデオ(UGV)は、短くて繰り返しではない。
我々は、ガーシュゴリンディスクアライメント(GDA)に基づく高速グラフサンプリングにより、遷移UGVを複数のディスクに線形時間で要約する。
提案アルゴリズムは,最先端の手法と比較して,映像の要約性能が向上し,複雑さが大幅に低減されていることを示す。
論文 参考訳(メタデータ) (2024-08-03T20:08:02Z) - Agnostic Tomography of Stabilizer Product States [0.43123403062068827]
クラス $mathcalC$ of $n$-qubit 安定化器状態に対する効率的な非依存トモグラフィーアルゴリズムを提案する。
我々は少なくとも$mathcalC$の任意の状態と近似する状態の簡潔な記述を出力する。
論文 参考訳(メタデータ) (2024-04-04T21:39:47Z) - Algoritmo de Contagem Qu\^antico Aplicado ao Grafo Bipartido Completo [0.0]
Groverのアルゴリズムは、$O(sqrtN/k)$ stepsを使って$N$要素を持つ、順序のないデータベースで$k$要素を見つけることができる。
この研究は、他のグラフのマーク要素の値$k$を推定するために量子カウントアルゴリズムを使用する問題に取り組む。
論文 参考訳(メタデータ) (2023-12-05T21:15:09Z) - Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
ランダムグラフにおける植込み高密度部分グラフの検出は、基本的な統計的および計算上の問題である。
我々は、$Gr(n, n-beta)ハイパーグラフにおいて、植えた$Gr(ngamma, n-alpha)$ subhypergraphの存在を検出することを検討する。
平均値の減少に基づく硬さが不明な微妙な対数密度構造を考えると,この結果はグラフの場合$r=2$で既に新しくなっている。
論文 参考訳(メタデータ) (2023-04-17T10:38:08Z) - Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect
Alignment [51.74913666829224]
強い反相関を持つデータセットに対して、適切なグラフは正および負のエッジ重みの両方を含むことを示す。
本稿では,平衡符号グラフの概念に着目した線形時間符号グラフサンプリング手法を提案する。
実験結果から, 署名付きグラフサンプリング手法は, 各種データセットにおいて, 既存の高速サンプリング方式よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-18T09:19:01Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
高速グラフサンプリングの最近の進歩を利用して,短い動画を複数の段落に効率よく要約する問題について検討する。
実験結果から,本アルゴリズムは最先端の手法と同等の映像要約を実現し,複雑さを大幅に低減した。
論文 参考訳(メタデータ) (2021-10-21T18:43:00Z) - Random Graph Matching with Improved Noise Robustness [2.294014185517203]
本稿では確率モデルに基づくグラフマッチングの新しいアルゴリズムを提案する。
我々のアルゴリズムは、$alpha le 1 / (log log n)C$ のとき、その基礎となるマッチングを高い確率で復元する。
これにより、以前の作業で達成された条件 $alpha le 1 / (log n)C$ が改善される。
論文 参考訳(メタデータ) (2021-01-28T02:39:27Z) - Quantum algorithms for graph problems with cut queries [17.149741568581096]
量子アルゴリズムは、$O(d log(n)2) の後に最大$d$のグラフを学習できることを示す。
また、量子アルゴリズムは、$O(sqrtm log(n)3/2)$多くのカットクエリで一般的なグラフを学習できることを示す。
論文 参考訳(メタデータ) (2020-07-16T12:21:01Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z) - Scalable Deep Generative Modeling for Sparse Graphs [105.60961114312686]
既存のディープニューラルネットワーク手法では、隣接行列を構築することで、$Omega(n2)$複雑さを必要とする。
我々は,この空間を利用して完全隣接行列を生成する新しい自己回帰モデルBiGGを開発した。
トレーニング中、この自己回帰モデルは$O(log n)$同期ステージで並列化できる。
論文 参考訳(メタデータ) (2020-06-28T04:37:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。