Emergence and Dynamical Stability of Charge Time-Crystal in a
Current-Carrying Quantum Dot Simulator
- URL: http://arxiv.org/abs/2205.06441v1
- Date: Fri, 13 May 2022 03:48:45 GMT
- Title: Emergence and Dynamical Stability of Charge Time-Crystal in a
Current-Carrying Quantum Dot Simulator
- Authors: Subhajit Sarkar and Yonatan Dubi
- Abstract summary: We show that time-crystallinity can be measured directly in the charge-current from a spin-less Hubbard ladder.
We demonstrate that one can dynamically tune the system out and then back into the time-crystal phase, proving its robustness against external forcings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Periodically-driven open quantum systems that never thermalize exhibit a
discrete time-crystal behavior, a non-equilibrium quantum phenomenon that has
shown promise in quantum information processing applications. Measurements of
time-crystallinity are currently limited to (magneto-) optical experiments in
atom-cavity systems and spin-systems making it an indirect measurement. We
theoretically show that time-crystallinity can be measured directly in the
charge-current from a spin-less Hubbard ladder, which can be simulated on a
quantum-dot array. We demonstrate that one can dynamically tune the system out
and then back into the time-crystal phase, proving its robustness against
external forcings. These findings motivate further theoretical and experimental
efforts to simulate the time-crystal phenomena in current-carrying nano-scale
systems.
Related papers
- Thermodynamics of coupled time crystals with an application to energy storage [0.0]
We study the thermodynamics and fluctuating behavior of two interacting boundary time crystals.
We exploit our theoretical derivation to explore possible applications of time crystals as quantum batteries.
arXiv Detail & Related papers (2024-11-07T16:21:26Z) - Time Crystals from single-molecule magnet arrays [0.0]
Time crystals are a unique non-equilibrium quantum phenomenon with promising applications in current quantum technologies.
Here we theoretically predict discrete time-crystals in a periodically driven molecular magnet array.
Surprisingly, we find that the time-crystal response frequency correlates with the energy levels of the individual magnets.
arXiv Detail & Related papers (2024-09-17T01:21:14Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer [0.20971479389679332]
We study the relaxation dynamics of initially prepared product states under periodic driving in a kicked Ising model.
We identify the presence of a prethermal regime characterised by magnetisation measurements at twice the period of the Floquet cycle.
Our results provide evidence supporting the realisation of a period-doubling DTC in a two-dimensional system.
arXiv Detail & Related papers (2024-03-25T12:56:13Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Signatures of discrete time-crystallinity in transport through an open
Fermionic chain [0.0]
We analytically identify the conditions for observing time-crystalline behavior in a periodically driven open Fermi-Hubbard chain attached to electrodes.
Remarkably, the spin-polarized transport current directly manifests the existence of a time-crystalline behavior.
Our findings are verifiable in present-day experiments with quantum-dot arrays and Fermionic ultra-cold atoms in optical lattices.
arXiv Detail & Related papers (2021-07-09T05:21:07Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum time crystals with programmable disorder in higher dimensions [0.0]
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions.
They are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing non-equilibrium dynamics.
arXiv Detail & Related papers (2020-04-15T18:02:07Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.